

Using Pattern Redundancy for Text Transcription and Retrieval

JY RAMEL, PP. ROY, N. RAGOT

Laboratoire Informatique (EA 2101) Université Francois-Rabelais de Tours - France

Overview

- Introduction
 - \Box Context of the work
 - □ Challenges
- Proposed architecture
 - □ Learning from the user feedback and from pattern redundancy
 - User driven method with AGORA
- Pattern redundancy
 - Description
 - Pattern selection
- Using connected components
 - □ For text recognition (OCR)
 - □ For typography analysis
- Using glyphs
 - □ For word spotting
 - □ For text transcription (OCR)
- Conclusion

Introduction Context of the work

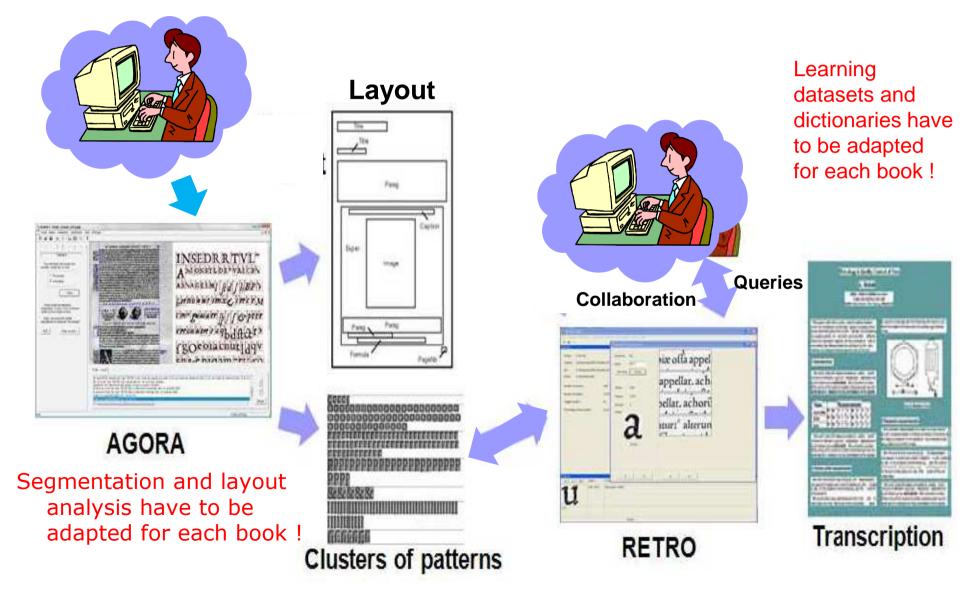
- Collaboration with the CESR of Tours
 - □ The Humanistic Virtual Library (BVH in French)
 - □ A research center and library with rare books (Loire Valley)
 - □ From the Renaissance period (14th 16th)
- A pluri-disciplinary collaboration
 Experts in DIA + Experts in old books + End-users
- Objectives: Deal with and manage specificity of old books
 Fully automatic is impossible because of variability
 - □ Introduce more interaction into DIA systems
 - \rightarrow user-driven method
 - Adaptation according to image contents (typography)
 - ➔ not before but during the processing

Introduction Challenges

Experiments with OCR realized by [AitMohand&Al2010]

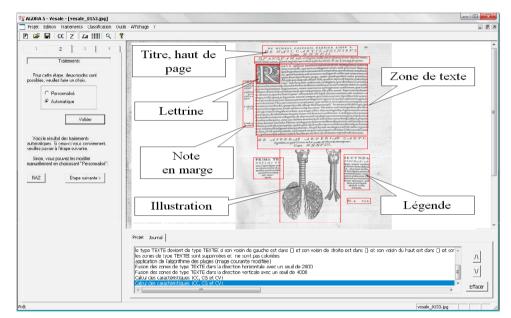
Segmentation in lines, words, characters is a problem

Books of the CESR	Omnipage classical segmentation	Omnipage with Ocropus segmentation
Recueil des antiquités Gauloises	89.82 %	85.93%
Histoire de l'expédition chrestienne au royaume de Chine	86.48%	61.25%
Les treselegantes et copieuses annales	85.6%	73.92%
Les histoires de Diodore sicilien	90.19%	83.82%



 Learning datasets (typography) and prior knowledge (dictionaries and linguistic aspects) are very important

Font	poly-font system	Adapted poly-font system mono-font syster			
Average (30 fonts)	86.59	96.02	99.55		
Berkeley Old – Berkeley Oldstyle	96.62	97.2	98.98		
Banco - Banco	34.08	73.46	98.77		
Mistral - Mistral	46.63	92.16	94.89		
Eette Kanzlei - Fette Kanzlei	68.36	95.74	99.43		


Proposed Architecture Learning from the users and from the data

System Architecture User-driven analysis with AGORA

- User-driven analysis
- Extraction of specific elements of contents (dropcaps, ...)
- Generate XML files describing the structure (similar to Alto) Lines, words and CC positions
- Used since 2004 (CESR)

Download:

http://www.rfai.li.univ-tours.fr/pagesperso/ramel/fr/work1.html

- Bases of ormemantal letters (+of 15000) and of typographical materials
- Bases of portraits (+ de 1500)

Voir sur http://www.bvh.univ-tours.fr 6

Pattern Redundancy in text Description

- Goal: Analyzing redundancy in images (text part for us)
 A text, ancient or not, is made up of sequences of similar patterns
- Methods: Clustering of similar patterns to create groups (classes)
 - Comparison of patterns (matching techniques)
 - Without prior knowledge about the meaning of these patterns
- Constraints are that the techniques should:
 - Produce very homogeneous clusters Different patterns may not be blended into one cluster
 - Produce a minimal number of clusters
- What could be a pattern?
 - □ Connected components [Lebourgeois95]
 - Words [Kluzner&Al2009]
 - Others [Roy&Al2011]
 - \Box Redundancy rate > 80 %

- Used first for compression in Debora project and DjVu Format

Using Pattern Redundancy for Text Transcription and Retrieval

Using connected components **AGORA** ouputs

sion Affidhage ImageRéele Image Virtuelle Options Transcription 🖉 🖾 🖾 🙉 🔍 🖉 🕕 🔰 1567mg983 🚯 Zoom % 20 0% les gents doctes vo iration, & que le iger affecte à nostr comme aussi le F dement loué & est nice de vostre bon nagnifié vostre pru

coord="798,107,2023,155">

<cc value="2">798,123,831,155</cc>

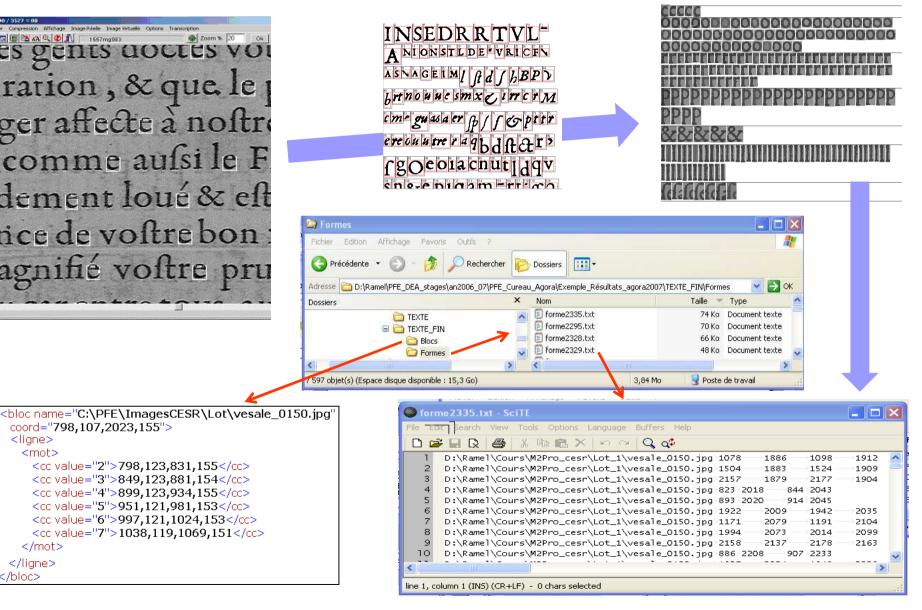
<cc value="3">849,123,881,154</cc>

<cc value="4">899,123,934,155</cc>

<cc value="5">951,121,981,153</cc>

<cc value="6">997,121,1024,153</cc>

<cc value="7">1038,119,1069,151</cc>

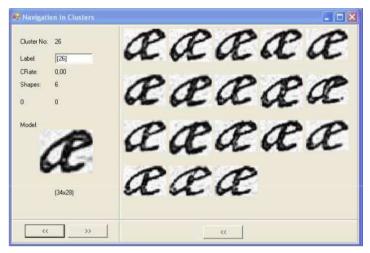

ligne>

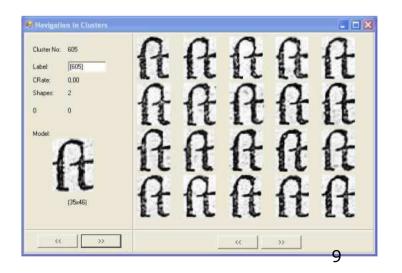
<mot>

</mot>

</liane>

</bloc>

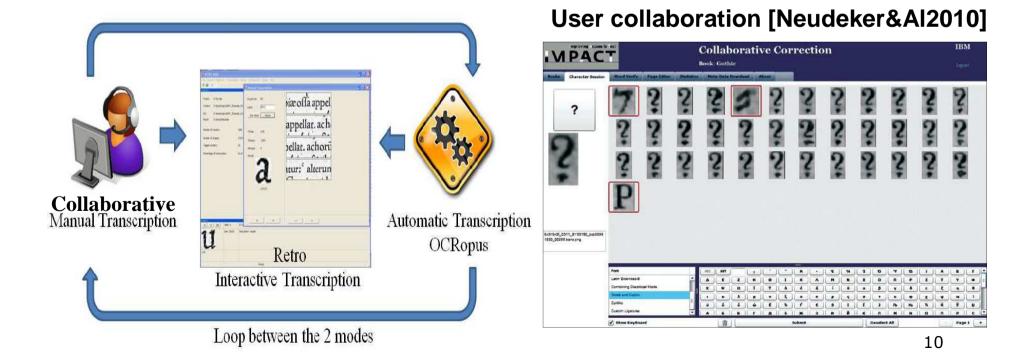



Using connected components For Transcription

RETRO GUI – Computer Assisted Transcription (manual)

- □ For tagging the clusters using unicode
- Cluster visualization
- Characters (CCs) in context
- Creation (selection) of new templates

約日 争	Manual Transcription
Projoca Filterpoy2222.46b Cutters: Filterpoy2222.46b Final Filterpoy22022_rano/TextE_FEN_for Final Filterpoy22022_rano/TextE_FEN_for Result: Filterpoy22022_rano/Text2008in Number of destors: 12231 Yearbot (Levers 0 Percentage of the textpdon 0,00	Christic 574 Late: 1574 Datable Rose Chee 000 Shave: 1/275 Marged 0 Marged 0 Ma
ariana < <u>xx</u> <u>pel</u> abolitin Hill	, , , , ,
-150 20312 Log	44 44 44



Using connected components For Transcription

Inside a loop !

- Cooperation between manual (collaborative users), automatic (OCR) and contextual (dictionaries) contributions
- □ Adaptive-system : From simplest to the more complicated

Using connected components For Typographic analysis

Create a classification of the Early Modern fonts

- □ Relationship between words containing characters which have the same shape → typographical family and character style
- Sorted newly created families to find the main typography class as well as minor typographies used for a precise logical meaning
- Very small typographical families represent words which seldom occur in the text (text in graphics, titles, authors' names, etc.)

Study of aesthetic aspects of printing

- The thickness and the shape of printing types evolved greatly from the 15th to the mid-16th century
- Extract and create new font packages from specific printing material (e.g. rare books printed with particular plug sets).

\$ ff or a ga a sta a a ff fs a a

Using connected components For Typographic analysis

- Improving the OCR learning step (templates)
- Dataset production
 - \square Based on the previous proposition \rightarrow typographic analysis
 - Produced fonts + model of distortion and degradation = adapted training sets
- Dynamic template selection (incremental learning)
 - Identification of specific fonts used inside the images
 - Automatic selection of specific OCR dedicated to that font (mono-font OCR)
 - □ Increase the potential performances of OCR engines
 - □ Adaptive-systems able to learn from the data

Using connected components Experiments

- Vésale 1543
- 150 pages in Latin
- 1.062.081 connected components
- Around 40.000 clusters
- The 200 largest classes correspond to 85% of the text
- 57% of the classes are composed of a single shape
- 90% of the classes are composed of less than 10 occurrences
- Ignoring these classes during transcription means to miss one character for 14 → more than one on each text line !!!

DE HVMANI CORPORIS FABRICA LIBER I.

diftinguente, alia educitur futura, oblique deorfuminter caninum & inciforium canino mum delata, quæ cum illa communis efficitur, quæ in palati extremo iuxta inciforios o tranfuerfim in illis animalibus fertur. Hæc futura citra omnem cartilaginis interuentun infignis eft, ut quartum à me enumeratum maxillæ os, canes in duo diuifum common Verùm non arbitrandum eft futuram hanc, inter dentium præfipiola in canibus aut fim étam, à fuperciliorum medio deorfum continuo progreffu (& fi Galenus ita doceat) fe uti iam admonuimus, ex medio ferè ductu illius futuræ incipit, quæ externum nafi offi tus terminat. Quod ubi in cane fimia'ue infpexeris, accurate expendito, quàm impoffil hanc futuram porrigi inter dentes hominis, maxillam adepti breuiffimam, & dentibus o prorfus exiguis donati. Infuper animaduertito, quid in libris de Partium ufu Galenus f luerit, quum duodecim fuperioris maxillæ offa effe obiter feripfit: uti & Introductorij fe dici autor, duodecim tantum maxillæ offa, e Veteru indubié placito, enumerat: aut quu lenus hæc offa prolixius comemorans, nouem tantu recenfet, nullumés os priuatim in dentibus tribuit, in co etiam numero cuneiforme os haud complectens.

DE MAXILLA INFERIORI, Caput X.

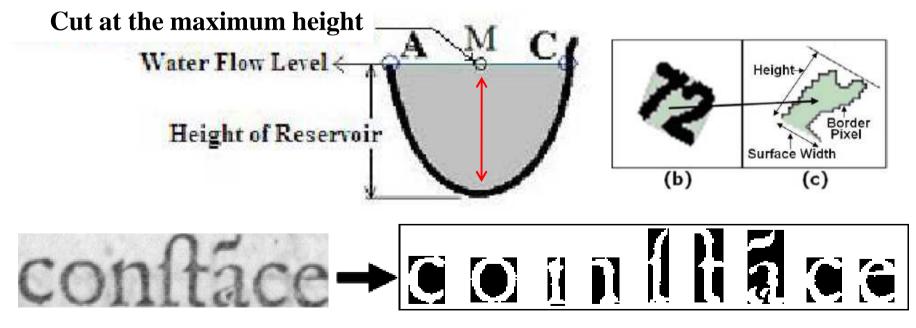
Using connected components (CC) Discussions

Good points with CC redundancy

- □ CCs should correspond to characters
- System can learn from the images and adapts itself to the used typographic materials
- Cluster transcription or recognition instead of individual pattern recognition (collaborative, manual, contextual, automatic, ...)

The segmentation problem is still remaining...

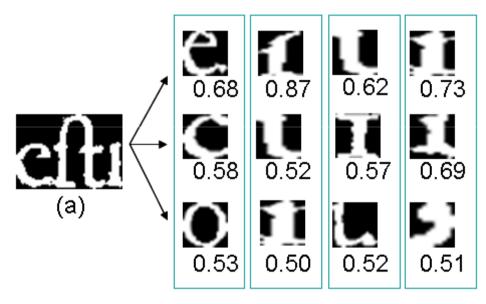
- Still require a segmentation step for characters, words and lines
- □ Problem with touching and broken characters (CCs)
- □ Problem with accents, punctuations, ...



Using glyphs [Roy&Al2011] For Word spotting

Overcoming of the segmentation problem

- □ Glyphs (parts of the connected components) instead of CCs
- Don't need a segmentation in words and in characters
- Water reservoir method to split a CC into glyphs


Clustering of glyphs

- Similarity measure between glyphs
 - For comparison of 2 glyph images
 - Size normalization by 20x20
- Creation of a codebook of frequent glyphs
 - Using a set of training images
 - Clustering of glyphs
 - Clusters selection (according to the size)
 - A glyph cluster is represented by a selected glyph (median)
- Text blocks are encoded
 - Each text line is indexed by a string of codebook indexes
 - Glyph clasisication with the same similarity measure

Word retrieval

- □ Glyph extraction and classification
- □ Top c=3 conservation (label and similarity measure)

- □ Approximate string matching algorithm (DTW like)
- □ Length of the strings *Query* and *Indexed* may be different
- $\hfill\square$ Finds all substrings of the Query that have at most k errors
- \Box Adapted to handle 'c' choices for each glyph in the Query

Experiments

□ Examples of Top 3 results for 5 queries

nature	LIVRE	toute	contre	viure
1	LIVRE			
nature	LIVRE	route	contre	vince
nture	IVRE	lours	Conte	meure

- □ Examples of spotted regions
- $autres \rightarrow grandeurs, & autres$ comme $\rightarrow accountremens, comme$

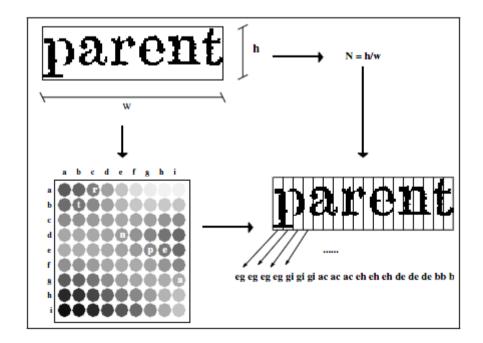
Experiments

- □ 45 pages of a historical book written mostly in French
- \square AGORA line segmentation \rightarrow 8675 word blocks
- □ Codebook of glyph generated from 24 pages (training)
- □ 57324 glyphs found in the training pages
- □ Clustered in 183 representative glyphs
- \Box With connected components \rightarrow 326 representative clusters
- Indexing = page processing
- □ Results on 20 query word images

Approach	Precision	Recall
CC based	70.39%	74.58%
Primitive based	79.46%	81.21%

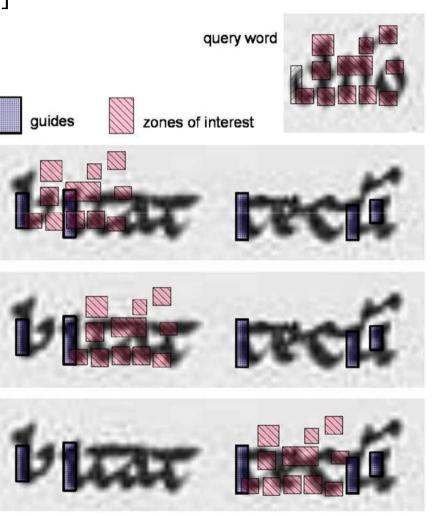
Conclusion

- Proposition of new methods
 - □ Learning from the images (using redundancy analysis)
 - □ Adaptive system, user-driven system
- Cluster transcription / recognition (collaborative, manual, contextual, automatic, ...) instead of individual pattern recognition
- Segmentation of text in words and word in characters is a problem
 - Touching and broken characters/connected components
 - □ Accents, punctuations, ...
- Using glyphs can be a solution
 - Done for Word spotting
 - □ To be studied for Transcription
- Work in progress...
 - □ Continue on using glyphs for text spotting and transcription
 - □ Google DH project (typography, lexicons, ...) with CESR


Thanks

Questions ?

Context of the work

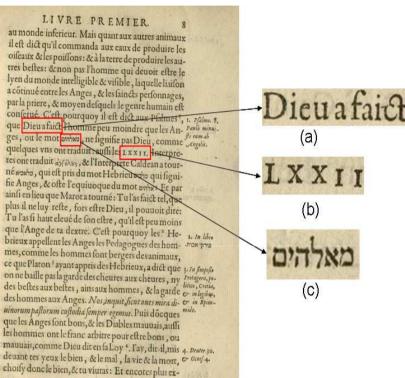

- {Marinia2003]
 - \Box Character Objects = CO
 - □ Extraction and clustering of COs
 - The COs in the word are located
 - $\hfill\square$ Each CO is labeled with the output neuron of the trained SOM.
 - □ The word image is partitioned into a fixed number of vertical slices.
 - □ Each slice gets the label of the CO with the largest overlap with it

Context of the work

- □ Word Spotting [Leydier&Al2009]
- □ Guides and Zone of interests

Introduction Our proposal

- More interaction in DIA systems
 - For adaptation according to each "book" specificities
 - For integration of the user needs
- Interactive analysis of images
 - $\hfill\square$ Adaptation according to user objectives
- Incremental analysis of images
 - Segmentation for recognition, recognition for segmentation
 - □ Solution: From the simplest to the more difficult
- Requirement
 - □ An adequate representation of the image content
 - Interoperability and compatibility capabilities between automatic and manual processing


Introduction Our proposal

Why OCR software will never work on such books ?

Linguistic aspects (Old French, Latin, ...)

- Typography
 - □ Materials (specific fonts)
 - □ Spacing (touching, broken, space)
- For example
 - The "long s" characters often confused with the letter "f" by OCRs
 - The "ct" ligature used in European fonts before the 19th

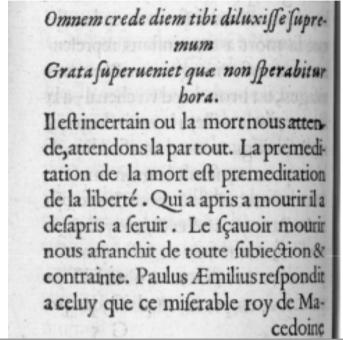
Pattern to recognize (words, characters or primitives)?

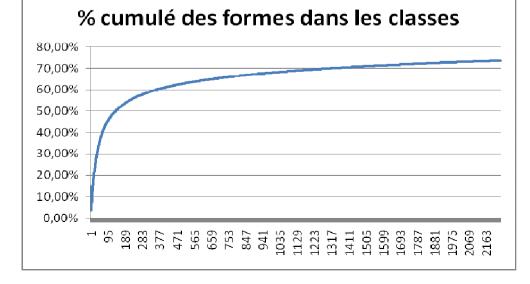
Introduction Our proposal

Experiments (on synthetic data)

Significant improvement when modifying the learning set of the OCR according to fonts present in documents

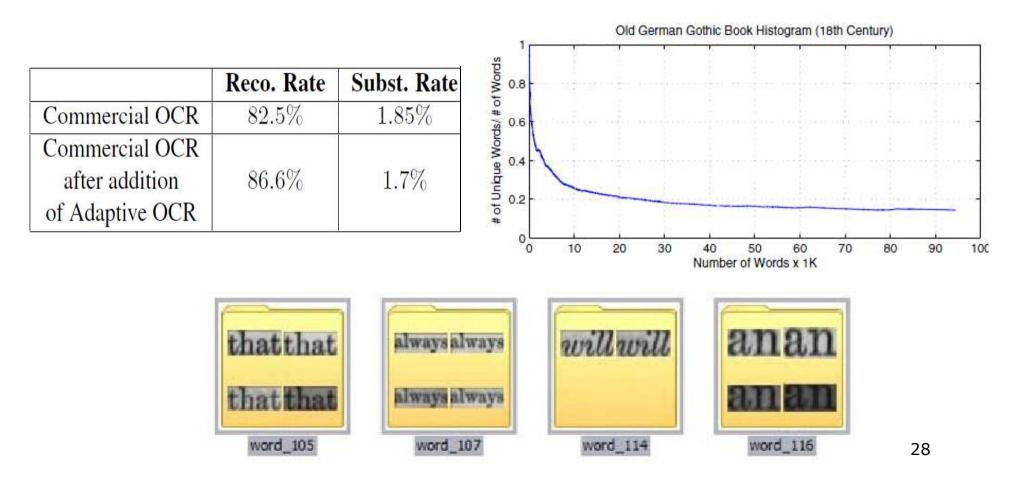
Experiments (on books from 17th - 18th)


- Significant improvement when replacing the default learning set by template characters from Human or Garalde font families:
 - Numerous ligatures between characters
 - Special characters used during the Renaissance period


Results provided by [AitMohand&Al2010]

Using connected components Experiments

- Montaigne 1557
- 119 pages 3260 text blocks
- 125 744 connected components (pseudo characters)
- 29 943 clusters
- 25 classes = 25% of the text
- 136 classes = 50%
- 4 000 classes = 75%
- 20 000 classes = 90%
- 79% of the classes are composed of a single shape
- The biggest class = 3%
- 1,2% of the shapes are put in the wrong cluster



Pattern Redundancy Pattern selection

- Using Words as Patterns [Kluzner&Al2009]
 - □ Converge after about 30000 words limit of 85% for 40000 words
 - □ Experiments : 101 scanned pages from a book printed in 18th century

Pattern Redundancy Pattern selection

- Using connected components as patterns
- The first and simplest way to realize such analysis
- Redundancy rate starts around 75% when using a single page
- Redundancy can reach up to 95% when processing an entire book (modern)
- This rate depends largely on the quality of printing

Number of pages	1	2	3	4	5	6	7	8
Total # of clusters of	555	915	1,209	1,485	1,678	1,870	2,083	2,262
binary patterns								
Total # of characters	2,327	4,245	6,681	8,681	11,159	13,589	16,141	18,028
Redundancy rate	76%	78%	81%	82%	84%	86%	87%	88%

 Redundancy rates slightly upwards of 80% when documents present high typographical variabilities of character style, size, and font.