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Figure 1: RGB and Depth Images of Real and Synthetic Dataset (fourth column) in our benchmark dataset for RGB-D sphere
based calibration. The proposed dataset contains 3 real sequences and 1 synthetic sequence with varying noise. The dataset
contains all camera parameters, as well as pre-detected ellipses and spheres.
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Abstract

Accurate calibration of an RGB-D camera couple is an impor-
tant task in computer vision, especially applications requiring
the knowledge of 3D information. Although a variety of al-
gorithms have been proposed, it remains difficult to evaluate
existing methods in the literature as oftentimes different se-
quences are used. In this paper, we propose a full dataset
benchmark, with real and synthetically generated sequences,
manually determined ground truth, and evaluation metrics for
comparison. Evaluation of three methods using this frame-
work are also provided. The proposed benchmark dataset is
available online at http://www.rfai.li.univ-tours.fr/
tools-and-demos/\

1 Introduction

A digital representation of our environment is a fundamental
requirement in many computer vision applications. An accu-
rate camera calibration is essential in many of these algorithms,
such as 3D reconstruction, object tracking or camera localiza-
tion. A key element of a more accurate representation of the

observed scene is to determine the three-dimensional geometry
of the objects of interest. However, the process of image for-
mation loses the depth information. Recently, the availability
of low cost depth cameras has made it possible to easily capture
this 3D data. The combination of a depth sensor with an RGB
camera provides enhanced scene information, and is referred
to as an RGB-D device. To obtain reliable data, it is neces-
sary to model the specific properties of the sensor pair with a
calibration procedure (Figure 2). However, the quality of the
manufacturer’s calibration, as well as the sensitivity of the cal-
ibration to external conditions, often makes it necessary to per-
form this operation by an expert, especially for high-precision
applications. (like medical ones). Also, these parameters may
not be given by the constructors.

To the authors knowledge, there is no general sphere based
RGB-D calibration dataset publicly available. New approaches
defines their own datasets, but the use of different cameras and
calibration scenarios makes the comparison between several al-
gorithms difficult. In this work, we propose a publicly available
benchmark dataset to evaluate sphere based calibration, with
both real and synthetically generated data, as well as results
from three methods [a].

This paper is structured as follows. Section 2 surveys re-
cent works related to RGB-D sphere based calibration. Section
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3 detail how the dataset was built, as well as several design
choices. In Section 4, multiples metrics are proposed to assess
the quality of an RGB-D calibration. Finally, Section 5 con-
clude this paper.

2 Related work

Most calibration approaches use objects whose geometric
properties are known, and are said to be supervised. These
approaches are based on the principle of identifying matching
features observed from several points of view to determine the
calibration parameters. The sphere appears as a points cloud
for the depth camera, and as an ellipse for the RGB camera.
The estimated centers of these quadratic forms provide refer-
ence points for calibration (Figure 3). Sphere based approaches
are easy to set up, as such an object is visible regardless of the
point of view of the cameras. In addition, their center can be
reliably detected by both cameras. Its disadvantage lies in the
fact that only a few calibration points are captured per frame,
making them more sensitive to measurements errors.

RGB Sphere based calibration Spheres are also a com-
monly used reference object in RGB calibration approaches.
These methods either uses the ellipses outline to deduce tan-
gent lines as calibration features [4], or the knowledge of the
sphere radius to estimate the sphere’s center in 3D as a refer-
ence point [, 6]]. Their calibration approaches reaches accura-
cies similar to reference RGB checkerboard based calibration
[71.

RGB-D Calibration Similarly to RGB camera calibration,
some RGB-D approaches uses a checkerboard as a calibration
reference object. The core idea is to identify checkerboard cor-
ner points in the infrared image[8} [9], and to use the knowl-
edge that the checkerboard lies on a plane [10, [11]. However,
these methods are not ideal, as the user must manually move
the checkerboard, which has to be printed in large format to be
visible by both cameras (especially with a wide baseline).

RGB-D Sphere based calibration Spheres have proven to
be a reliable calibration object for RGB-D camera calibration.
The method of Staranowicz et al.[2] proposes the use of a sin-
gle sphere with unknown geometric properties, and to correct
the projected spheres centers. However, they do not model the
Depth mapping function. Several sphere based approaches are
based on the principle of precisely determining the center of
the sphere, and to register the spheres centers identified by both
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Figure 2: Visualization of the intrinsic parameters of the pin-
hole camera model.
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Figure 3: Overview of a sphere based RGB-D calibration
scene. The sphere is seen as an ellipse for the RGB camera
{R}. The sphere is seen as a point cloud for the depth Cam-
era {D}. The two optic centers are linked by a rigid transform
(R]t).

cameras. Using the knowledge of the sphere radius, Boas et al.
[I3] proposed to detect spheres centers from RGB images and
to perform the calibration using the 3D spheres centers coor-
dinates, which limits the effect of the depth camera error in-
creasing with the distance. Another advantage of sphere based
calibration is to allow calibration with wide baselines, making
it effective for camera network extrinsic parameters estimation
[12} 13 [14]. However, these approaches rely mostly on the
depth data, and only estimate the extrinsic parameters.

Datasets Previous methods define their own dataset, which
makes it difficult to repeat some experiments and to make com-
parisons on an identical basis. Indeed, a calibration algorithm
is very much linked to the detection phase, as well as to the
hardware used. We thus propose a common basis for the eval-
uation of sphere based calibration.

3 Proposed benchmark dataset

A first step for sphere based RGB-D calibration is to detect
the spheres precisely. However, a common problem for camera
calibration evaluation is the impossibility of absolutely deter-
mining both the intrinsic parameters of the cameras, and the
extrinsic parameters between the two cameras. Thus, without
reference values, it is difficult to assess camera calibration qual-
ity. The usual way to get around this problem is to define, in
addition to real data, synthetically generated data whose pa-
rameters are known. Thereby, our dataset is divided into real
and synthetic data, with ground truth determined manually for
real data. An overview of all proposed dataset is presented in

3.1 Problem formulation

To align the RGB and Depth streams, it is necessary to model
the intrinsic parameters of both cameras. In the case of a stan-
dard camera, these parameters are represented by a pinhole
camera model, which models the image formation process by



Dataset Color Carpera Depth Camera # RGB-D Pairs Support Capture Known Parameters
Resolution Resolution Setup
Random Hololens n°1  Structure Sensor 7 Single Sphere Stationary Intrinsic RGB
1280x720 640x480 Support Intrinsic Depth
Equidistant Hololens n°2  Structure Sensor 27 Single Sphere Stationary Intrinsic RGB
1280x720 640x480 Support Intrinsic Depth
Realsense Realsense Double Sphere Intrinsic RGB
Double SR300 SR300 40 S ot Hand-held Intrinsic Depth
1920x1080 640x480 Hbpo Extrinsic RGB-D
Synthetical 1280x960 - 20 Single sphere ( Absollﬁeltlvalues)

Table 1: Proposed datasets overview for sphere based RGB-D calibration.

representing the focal distance and the center of the image (also
known as the principal point) into a 3x3 matrix.

The intrinsic parameters K of the two cameras are referred
to as *K and PK, where {® } refers to the RGB camera and
{D} to the depth camera; with (f,,f,) the focal length and
(up,vo) the principal point. The alignment of the two streams
is then achieved by a rigid transform (R|t), called the extrinsic
parameters. This transform is composed of a 3x3 rotation ma-
trix R and a 3x1 translation vector t. The rotation can also be
modeled by a rotation vector r := (ry, 7y, 7;), Which is expressed
as Euler angles in degrees (ZYX convention).

3.2 Real sequences
3.2.1 Acquisition

While acquiring a sequence, the two cameras simultaneously
observe the same scene. These two cameras are placed as
close as possible, and are considered motionless relative to each
other. Both cameras observe a sphere whose radius is known.
These cameras capture RGB-D image pair (i.e. an RGB image
and a Depth point cloud) simultaneously, which are available
for each sequence. Each image pair is temporally distinct (for
improved quality), and was captured in good and fixed lumi-
nosity conditions.

To construct the described datasets, we used 3D printed
spheres (printing accuracy of 0.5 mm). To simplify the ellipse
detection phase, these spheres are painted in blue. Two types of
support have been created as part of this benchmark (Figure 4).

Single Sphere support The first support consist of a sin-
gle sphere attached to a mobile mast. The mast is fixed to a
table. A sheet of paper is added behind the sphere to give a
high contrast between the sphere and the background. While
making captures, a human operator manually move the sphere
to its next position.

The data are captured with the following cameras. For RGB
images, the front facing color camera of the Microsoft mixed
reality headset, the Hololens 1.0, is used. A structured light
depth camera, the Structure Sensor, is attached above the head-
set. The headset is placed on a fixed 3D printed support, and is
oriented towards the sphere. The manufacturers intrinsic cam-
era parameters are known. However, no manufacturer extrin-

sic parameters can be provided. Two sequences following this
setup are provided.

Random For this sequence, the sphere is placed randomly
in the field of view of both cameras, for a total of 72 RGB-
D image pairs. The relative distance between the sphere and
the cameras for a capture is comprised between 0.35 and 0.75
meters.

Equidistant This sequence, on the contrary, controls pre-
cisely the sphere position. As such, the positions of the spheres
are determined in such a way as to uniformly cover the entire
field of view of the cameras. For a given depth value, nine po-
sitions are determined. Eight of these positions follow the edge
of the RGB camera’s field of view. The last position is the cen-
ter of the camera. This operation is performed for three distinct
depth values, i.e. 0.5, 0.75 and 1 meters, providing 27 RGB-D
image pairs in total.

Double Sphere support The second support consists of
two spheres placed on a stable support, all entirely printed in
3D. For the related sequence, named Double, the support is
fixed, and the camera is hand-held. The camera couple used
here is the Intel RealSense SR300. This sequence allows for a
more realistic setup, and to capture a wider number of sphere
by RGB-D image pairs.

Figure 4: Visualization of both capture setups, as well as single
and double sphere support.



In total, 20 RGB-D image pairs were captured, giving a
number of 40 spheres. Finally, both the intrinsic and extrinsic
parameters are provided by the manufacturer.

3.2.2 Ground truth

There is no mean to have an accurate estimate of the intrin-
sic and extrinsic parameters with real data other than perform-
ing a calibration. Nonetheless, to have a comparison value,
input RGB-D image pairs have been manually segmented with
high accuracy. The Direct Linear Transform (DLT) algorithm,
adapted to sphere based calibration [} 2], have been applied in
order to have an estimate of the intrinsic and extrinsic param-
eters. This algorithm requires both ellipses detection for the
RGB camera, and spheres detection for the depth camera.

RGB Ellipse detection For the related sequences, the el-
lipses have been manually segmented using the Gimp Soft-
ware. The contour is then extracted, and an optimization based
least-square ellipse fitting is performed.

For each RGB frame, we thus obtain an ellipse estimate,
as well as a binary mask. This mask is used to estimate el-
lipse detection algorithm’s accuracy against ground truth with
a pixel-by-pixel comparison.

Depth Sphere detection Regarding the depth data, the
points cloud have been manually segmented with the MeshLab
Software. Once only points belonging to the sphere remains,
an optimization based least-square sphere fitting is performed,
using the sphere radius knowledge. The cropped points are
projected back onto the depth camera plane using the manu-
facturer depth intrinsic parameters, giving a segmented depth
map, in a matrix form. Thus, for each depth frame, we obtain
a cropped point cloud estimate, a sphere estimate and a depth
map estimate.

Each type of output data, as well as their format, are explained
in detail in

3.3 Synthetical sequences
3.3.1 Generation

While the accuracy of the detection algorithms used as the first
step of every calibration algorithm may be improved, an error
will always remain because of various factors (rasterization,
sensor noise, analogical to digital conversion, etc ...). It is well-
known that calibration algorithms are sensitive, and highly de-
pendent on the detection accuracy of the reference points. It
is thus common to evaluate any new calibration algorithm with
synthetically generated data, allowing perfect prior knowledge
of both extrinsic and intrinsic parameters.

The simulated scene contains an RGB-D camera couple ob-
serving multiples spheres with known radius. The sphere’s po-
sitions, the extrinsic parameters and the intrinsic parameters of
both cameras are known and fixed for all synthetically gener-
ated dataset, and will constitute our ground truth. The depth
camera is placed above the color camera at a reasonable dis-
tance, and with no rotation. The intrinsic parameters are chosen
with values according to currently available hardware.

As proposed by [2]], twenty spheres are randomly generated
at the intersection of the field of view of the two cameras. For
each sphere center, we randomly generate a hundred 3D points
on the periphery of half of the sphere by using the parametric
equation of a sphere. We generate the input data from these
twenty sets of a hundred points. Knowing the true properties
of the spheres, we can project the spheres on the RGB camera
plane to obtain the associated ellipses. Also, we generate the
depth map of the depth camera by projecting the points on the
depth camera plane, in a matrix form.

3.3.2 Noise application

Once the reference ground truth scene is generated, some noise
has to be introduced to the data to simulate a realistic scene.
Three kind of errors are introduced, with values selected by
reviewing recent RGB camera calibration literature [7, [15].

RGB ellipse fitting error The error f; models the image
formation error and the ellipse fitting error. It applied a zero
mean Gaussian noise A’(0,6¢ = 0.6) on all points belonging
to the detected ellipses. The ellipse fitting process is then ap-
plied back on these modified points. This method allows to
change the ellipses centers, their axes length, and their orienta-
tion consistently.

RGB intrinsic noise The second error f> models the in-
accuracies in the RGB camera intrinsic parameters estimates.
It is represented by which applies a linear noise
on the intrinsic parameter by scaling their value by a scalar
n= 1 4+ 2%o.

(n xfo 0 mMx u0>
LKn)=| 0 mxfmnv (1)
0 0 1

Depth displacement The third error, 6p, represents the
error in sphere fitting, as well as depth camera inaccuracies
increasing with distance. It is modeled by an identical transla-
tion on all sphere points, which has the effect of moving the
detected sphere center. This noise allows to characterize any
kind of error. Indeed, a Gaussian noise only slightly changes
the points cloud centroid, making this approach inefficient.

We wish to evaluate the influence of the estimated sphere
centers on the calibration result. Thus, we only vary the Depth
displacement 6p. This noise is randomly generated for each
sphere’s points cloud. The random aspect of this noise requires
to repeat the experiment several times (here 100 times) to ob-
tain average results.

3.4 Datasets organization

For every dataset, raw data captured by the sensors, manually
processed data (as ground truth) and automatically processed
data are available. Three kind of data format are supplied. Im-
ages files are provided as .PNG, points cloud files as .PLY, and
parameters files are .YML. The provided files are separated in
several folders, with associated files having the same filename

(Figure 5). Finally, we also propose the manufacturer calibra-
tion parameters, as well as the sphere radius.



Processed Data

Output Data

Raw b RGB Depth g}{'t) }\Calibration
aw Data \Ellipse \Crop i
\RGB \EllipseImg \DepthMap \Colorized
\POINTS \EllipseMask \Sphere Reprojection Error - Eq. (4)
\DEPTH DSC L,-norm 3D displacement - Eq. (5)
Eq. (2) Eq. 3) Absolute Difference - Eq. (6)
Translation Error - Eq. (7)
Rotation Error - Eq. (8)

Figure 5: Overview of dataset organization and their respective metrics (in light gray) for evaluation of the RGB-D Calibration

process.

Raw Data Data provided by the sensors are separated in
three folders. We provide color images, point clouds, as well
as depth maps obtained by the cameras. No sensor depth maps
are provided for the Double dataset, and the synthetically gen-
erated one.

Processed Data Processed Data include segmented files,
as well as fitting results of the identified quadratic forms. This
allows to begin, and evaluate, a calibration algorithm at any
point of the calibration pipeline.

RGB related processed data are linked to ellipses. Those
are provided in parametric form. The ellipses masks, as well as
their visualization on the RGB images, are provided.

Depth related processed data include segmented points
cloud, associated segmented depth maps, and fitted spheres in
parametric form. We also supply the projection of the sphere
centers onto the depth camera plane, and their fitting error
(Root Mean Square).

Output Data In addition, we give calibration results from
the DLT algorithm [1]]. Using the DLT results as an initial cal-
ibration guess, we also propose results for the Staranowicz et
al. method [2], and Boas et al. approach [3]. All following
evaluation metrics, as well as colorized points cloud are also
available. Finally, an analysis of the calibration results has been
provided in [3].

4 Evaluation Methodology

In our work, we propose several metrics to evaluate the cali-
bration accuracy. We will refer to synthetically generated cali-
bration parameters, as well as manually segmented data as our
ground truth GT.

4.1 Ellipse detection evaluation

To evaluate ellipse detection, a comparison pixel-by-pixel is
proposed. The pixels on the outline and inside the estimated el-
lipse, X, are compared against ground truth binary mask pixels
Xgr. A single evaluation value is given by the Sgrensen-Dice

coefficient (Equation 2J).

2|X ﬂXGT|

DSC= ——
1X|+ |Xer|

@)

4.2 Sphere detection evaluation

To evaluate Depth data segmentation, we jointly evaluate the
sphere detection and fitting. We use the Ly-norm (also known
as the Euclidean distance) between the manually estimated
sphere center g7, and the obtained sphere center 2O

tion 3.

L =[["0gr — ?0||> 3)
4.3 Calibration evaluation
4.3.1 Real datasets metrics
Two evaluation metrics for real data are proposed : the gold

standard 2D reprojection error [1]], and the visualization.

Reprojection error It is the mean Euclidean distance be-
tween the estimated RGB ellipses centers,ROei, and the pro-
jection of the depth sphere center DOSi onto the color cam-
era plane (Equation 4). This computation requires the rigid
transform (R|t) between the depth and RGB camera to ex-
press the sphere center in the RGB camera coordinate system
(Rx;,% y;,% z;). The point is then projected using the RGB cam-
era intrinsic parameters XK.

Z HKOCt

Visualization Using the same approach to project depth
data onto the RGB camera plane, it is possible to obtain col-
orized points cloud. This offers a good visualization of the
calibration parameters integrity, especially on objects borders.

RKR ?0;, +t)||2 4)

4.3.2 Synthetic Dataset

Although the reprojection error allows to evaluate the calibra-
tion with a single value, it does not allow to determine the cause
of a calibration error. The knowledge of real intrinsic and ex-
trinsic parameters with synthetically generated data allows to
define several more evaluation metrics to identify the error ori-
gin.

3D displacement This metric can be interpreted as the 3D
equivalent of the reprojection error. It allows to express all cal-
ibration parameters in a single value, while avoiding the prob-
lems of the reprojection error. It is the mean Euclidean distance



between the ground truth RGB spheres centers X0y, and their
corresponding depth spheres centers @Osi (Equation 5). This
metric cannot be used with real data, as it can be difficult to ac-
curately detect the center of a sphere from a single RGB image.

E, — - Y %0, — KR POy, +t)||2 (5)
i=1

Absolute difference We also propose to use the absolute
difference between a real value X7 and the estimated value X

(Equation 6).

Xaifr = |X — Xor| (6)

This allows to determine the error for any parameter in-
cluded in the calibration, i.e. (fy,f,,uo,vo) for the intrinsic
parameters, and (ry, ry, 7, 1y,1y,1;) for the extrinsic ones.

Rigid body errors An easier way to assess the extrinsic
parameters accuracy in fewer values is to evaluate both the ro-
tation and the translation errors in their entirety. Thus, we pro-
pose to use the Lr-norm to evaluate the translation error t,,.,

(Equation 7).
terr: ||tGT*tH2 (7)

As for the rotation, a direct way to evaluate rotation matri-
ces is to perform the dot product between the ground truth Rgr
and the estimate R to have the relative rotation. The trace of the
resulting rotation matrix makes it possible to directly determine
the value of its rotation angle 0, which is equal to 1+ 2cos(0).
Thus, the relative rotation value, which corresponds to the error

R, is expressed by [Equation 8|in radians.

trace(RE; R) — 1 )
2

R, = acos(

®)

5 Conclusion

In this work, we propose a benchmark dataset for sphere based
RGB-D calibration, and propose metrics at every step of a cal-
ibration process to assess their performance. The proposed
benchmark dataset contains 3 real datasets, and one synthet-
ically generated dataset, with respective manually obtained
ground truth for real data, and absolute ground truth for syn-
thetic data. The evaluation results of three approaches are also
provided.
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