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Résumé

Les caractéristiques locales sont essentielles dans de nombreux domaines de 1’analyse
d’images comme la détection et la reconnaissance d’objets, la recherche d’images, etc. Ces
derniéres années, plusieurs détecteurs dits locaux ont été proposés pour extraire de telles
caractéristiques. Ces détecteurs locaux fonctionnent généralement bien pour certaines ap-
plications, mais pas pour toutes. Prenons, par exemple, une application de recherche
dans une large base d’images. Dans ce cas, un détecteur a base de caractéristiques bi-
naires pourrait étre préféré & un autre exploitant des valeurs réelles. En effet, la précision
des résultats de recherche pourrait étre moins bonne tout en restant raisonnable, mais
probablement avec un temps de réponse beaucoup plus court. En général, les détecteurs
locaux sont utilisés en combinaison avec une méthode d’indexation. En effet, une méthode
d’indexation devient nécessaire dans le cas ot les ensembles de points traités sont composés
de milliards de points, ol chaque point est représenté par un vecteur de caractéristiques
de grande dimension.

Malgré le succés des nombreuses méthodes proposées dans la littérature pour la mise
en place de tels détecteurs, aucune approche robuste de détection au sein des images de
trait ne semble exister. Par conséquent, la premiére contribution de cette thése est de
proposer une telle approche. Plus précisément, une nouvelle méthode de détection de
jonctions dans les images de trait est présentée. La méthode proposée posséde plusieurs
caractéristiques intéressantes. Tout d’abord, cette méthode est robuste au probléme de
déformation des jonctions. De plus, cette méthode peut détecter plusieurs jonctions dans
une méme zone, supportant ainsi les cas de détection multiple. Ensuite, les jonctions sont
détectées avec peu d’erreurs de localisation, caractérisant ainsi la précision de la méthode.
La méthode proposée a également une faible complexité algorithmique, lui permettant ainsi
de supporter des applications & fort coiit de calcul comme la localisation, la recherche ou
la reconnaissance de symboles. Enfin, elle est invariante aux transformations géométriques
habituelles (rotation, changement d’échelle et translation) et robuste aux déformations
communes rencontrées dans les images de documents (comme le bruit d’impression, la
basse résolution et artefacts de compression).

Des expériences approfondies ont été menées pour étudier le comportement de la méth-
ode proposée. Celle-ci a été comparée & deux méthodes référentes de 1’état de 'art. Les
résultats ont montré que la méthode proposée surclasse significativement les approches de
I’état de 'art. De plus, cette méthode s’est avérée utile pour la réalisation d’applications
de plus haut-niveau. En effet, une application de localisation de symboles a été développée,
démontrant que les jonctions détectées pouvaient étre un support essentiel a I'extraction
des autres primitives graphiques composant le document, permettant ainsi une localisation
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et une reconnaissance robustes des symboles.

La seconde contribution de cette thése traite de I'indexation de caractéristiques. Les
méthodes de recherche de plus proches voisins rapides sont devenues un besoin crucial pour
de nombreux systémes de recherche ou de reconnaissance. Bien que de nombreuses tech-
niques d’indexation aient été proposées dans la littérature, leurs performances de recherche
restent limitées & certains domaines d’application seulement. De plus, les méthodes exis-
tantes, qui sont efficaces dans le cas de la recherche approximative de plus proches voisins,
s’avérent moins efficaces pour ce qui est de la recherche exacte. Les limites de ces méthodes
nous ont conduits & proposer un algorithme d’indexation avancé. L’algorithme d’indexation
proposé fonctionne aussi bien pour les taches de recherche approximative que de recherche
exacte de plus proches voisins. Des expériences approfondies ont été menées afin de com-
parer I'algorithme proposé & plusieurs méthodes de I'état de 'art. Ces tests ont montré
que l'algorithme proposé améliore significativement les performances de recherche, pour
différents types de caractéristiques, par rapport aux méthodes auxquelles notre algorithme
a été comparé.

Enfin, les codes source des deux ont été rendus disponibles pour 'intérét des chercheurs.

Mots clés :  Détection de jonctions, caractérisation de jonctions, détection de points
d’intérét, documents graphiques, images de trait, recherche approximative de plus proches
voisins, indexation de caractéristiques, arbres de clustering.



Abstract

Local features are of central importance to deal with many different problems in image
analysis and understanding including image registration, object detection and recognition,
image retrieval, etc. Over the years, many local detectors have been presented to detect
such features. Such a local detector usually works well for some particular applications
but not all. Taking an application of image retrieval in large database as an example,
an efficient method for detecting binary features should be preferred to other real-valued
feature detection methods. The reason is easily seen: it is expected to have a reasonable
precision of retrieval results but the time response must be as fast as possible. Generally,
local features are used in combination with an indexing scheme. This is highly needed for
the case where the dataset is composed of billions of data points, each of which is in a
high-dimensional feature vector space.

Despite the success of many local detectors in the literature, no robust approach to de-
tect local features in line-drawing images seems to exist. Therefore, the first contribution
of this dissertation attempts to bring such an approach. Particularly, a new method for
junction detection and characterization in line drawing images is presented. The proposed
approach has many favorable features. First, it is robust to the problem of junction dis-
tortion. Second, it has the ability of detecting and handling multiple junctions at a given
crossing zone. Third, the junctions are detected with a small error of location, highlight-
ing like this method precision. Fourth, the proposed approach is time-efficient supporting
different time-critical applications such as symbol spotting/retrieval /recognition. Finally,
it is stable to common geometry distortions (e.g., rotation, scaling, and translation) and
can resist some typical noise in document images (e.g., produced by scanners, re-sampling
or compression algorithms) with a satisfactory level.

Extensive experiments were performed to study the behavior of the proposed approach.
Comparative results were also provided where the proposed approach gives much better
results than two other state-of-the-art methods. Furthermore, the usefulness of the de-
tected junctions is shown at application level. For this concern, an application to symbol
localization is developed. This application shows that the junction features are useful,
distinctive, and can be used to support the problem of symbol localization/spotting in a
very efficient way.

The second contribution of this thesis is concerned with the problem of feature indexing.
Fast proximity search is a crucial need of many recognition/retrieval systems. Although
many indexing techniques have been introduced in the literature, their search performance
is limited to the application domains where a very high search precision is expected (e.g.,
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> 90%). Besides, the existing methods work less efficiently for the case of exact nearest
neighbor search. The limitations of these methods have led us to propose an advanced
indexing algorithm. The proposed indexing algorithm works really well for both the tasks
of exact/approximate nearest neighbor search. Extensive experiments are carried out to
evaluate the proposed algorithm in comparison with many state-of-the-art methods. These
experiments clearly show that a significant improvement of search performance is achieved
by the proposed indexing algorithm for different types of features.

At last, the source codes of our two contributions are made publicly available for the
interest of researchers.

Keywords :  Junction Detection, Junction Characterization, Junction Distortion, Topol-
ogy Correction, Edge Grouping, Dominant Point Detection, Graphical Documents, Line-
Drawings, Approximate Nearest Neighbor Search, Feature Indexing, Locality-Sensitive
Hashing, Clustering trees.
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Introduction

This dissertation concerns two emerging problems of (i) junction detection and char-
acterization in line-drawing images and (ii) feature indexing in high-dimensional vector
space. The former problem is addressed in the context of graphical line-drawing images
which is an active sub-area of document image analysis and understanding. The useful ap-
plications typically include symbol recognition, symbol localization and spotting, symbol
indexing and retrieval, sketch-based retrieval of architectural/electronic images, etc. The
later problem is addressed in a more general context of feature vector space in which its
applications are broad including those in both computer vision (CV) and document image
analysis (DIA) fields. This chapter aims at providing a brief introduction of the context
of this thesis. Particularly, three main points are discussed including a general discussion
about the CV and DIA fields; the important role of local feature detector, descriptor, and
indexing; and the motivation of this work.

Introduction to CV and DIA

Computer vision is a vast and active field of computer science in which its interests are
broad including the methods for acquiring, processing, analyzing, understanding, segment-
ing, and recognizing images from the real world [Morris, 2004]. Some typical applications of
the CV field include robot navigation, security monitoring and surveillance, bio-informatics
recognition system, people tracking and counting, content-based image retrieval (CBIR),
gesture recognition, etc. Among various topics of the CV field, pattern recognition (PR)
could be considered as a core and interdisciplinary part whose key goal is to assign a label
for a given input data. Generally, pattern recognition algorithms involves in three crucial
tasks of object segmentation, feature extraction, and classification. These algorithms are
often categorized as structural-based and statistical-based approach. The structural-based
approach involves in constructing the structural relations among the primitives. These
relations can be represented by the means of syntactics and graphs. Primitive matching is
then performed using a grammar parsing process |[Tanaka, 1995] or a subgraph matching
algorithm [Damiand et al., 2009]. In contrast to the structural pattern recognition meth-
ods, the statistical-based approach offers many powerful computation models of clustering,
classification, and regression. These models have been proved to be highly efficient to
perform many different tasks of object detection, spotting, and recognition. An extensive
review of statistical pattern recognition methods could be found in [Jain et al., 2000]. Sev-
eral attempts have been investigated to combine the advantages of both the approaches.
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This is referred to graph embedding as presented in |Riesen et al., 2007, Lugman, 2012].

Document image analysis is another active research field of computer science whose
interests are mainly focused on processing, understanding, and recognizing document im-
ages. These document images could be acquired by digital machines like scanners, cameras,
electronic pen-input devices. Some typical applications of DIA include optical character
recognition (OCR), writer identification, signature verification, mathematical formula iden-
tification and recognition, historical document retrieval, symbol detection, localization and
spotting, etc. Among many different research themes of DIA, the problem of using graphic
information is an intensive research activity. Generally, graphics recognition concerns as-
signing a class label for an input object given a list of pre-defined graphics objects. In DIA,
graphic objects can be lines, arcs, arrows, logos, symbols, etc. Earlier works on graphics
recognition were considered as a post-process of a vectorization system. In this context, the
main goal of graphics recognition is to group the raw results from a vectorization system
into different types of graphic objects [Wenyin and Dori, 1998].

Recent works on graphics recognition have moved towards symbol recognition, retrieval
and spotting, and performance evaluation [Tombre, 2006]. Logos and trademarks can be
considered as a special type of symbol. In this sense, interesting topics are logo detection
[Zhu and Doermann, 2007|, logo spotting |[Rusinol and Llados, 2009a], and logo retrieval
|[Rusinol and Llados, 2010]. Emerging topics on this field have focused on fast logo retrieval
under large-scale datasets [Jain and Doermann, 2012|. On the other hand, in line drawings
a symbol can be defined as a graphical entity with a particular meaning in the context of
specific application domain. Symbols can serve in different applications including document
re-engineering, understanding, classification and retrieval [Rusinol et al., 2010]. A survey
of existing works of symbol recognition on logical diagrams, engineering drawings, and maps
was reported in [LLados et al., 2002]. Comparative results have been reported throughout
a series of symbol recognition contests, which concern the aspects of performance evaluation
[Delalandre et al., 2008|.

Nowadays, due to the fast growing of portable digital imaging devices (e.g., cameras,
smartphones, electronic camera-pen systems), the acquisition of document images becomes
much more convenient, and thus the huge expansion of document data emerges. In this
expeditious evolution, the real challenges in DIA have shifted to the problems of mass of
data. Camera-based document image analysis (CBDAI) has emerged as a very hot research
topic [Kim, 2005, Liang et al., 2005, Yin et al., 2007, Vajda et al., 2011]. Large-scale dig-
itization and analysis of historical documents and artworks has also increasingly focused
[Lins et al., 2011, Yang et al., 2011, Embley et al., 2011, Landon, 2013]. Open challenges
involve the activities of constructing, indexing, and browsing of mass digitized documents.
In practices, over the past decade, the interests have moved towards real time docu-
ment analysis systems. Few examples of such systems include real time graphical sym-
bol spotting in camera-acquired documents [Rusinol et al., 2013], real time camera-based
document retrieval |Takeda et al., 2011], fast word spotting in large-scale digital libraries
[Roy et al., 2012].

Although the DIA methods involve in handling the document images, there exists some
common themes that can be reused from the well established theories in the CV field. Par-
ticularly, many powerful statistical computation models such as support vector machine
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(SVM), Bayesian networks, neural network, AdaBoost, and hidden Markov model (HMM),
can take part of the OCR systems |Parvez and Mahmoud, 2013], writer and signature verifi-
cation systems [Liwicki et al., 2011], handwriting recognition systems [Graves et al., 2009].
Besides, the structural-based methods using graphs have been extensively used in many
different areas of DIA such as clustering of ancient ornamental letters [Jouili et al., 2010,
symbol spotting [Qureshi et al., 2008], symbol recognition [Llados et al., 2001], image re-
trieval [Jouili and Tabbone, 2012]. Moreover, since real time camera-based document anal-
ysis has emerged as an important activity in the DIA field, traditional techniques using
local features and indexing in the CV field can be employed as the promising solutions
[Jain and Doermann, 2012, Takeda et al., 2012].

Local feature detection, description, and indexing

To support a wide range of applications in both the CV and DIA fields, local features
have been emerged as an important role in image analysis and recognition |Tuytelaars, 2007].
Especially, local features are very useful to address time-critical applications. Typically,
there are three main challenges involved in processing local features: local detector, local
descriptor, and indexing. Figure 1 gives an illustration of a general system architecture
which is commonly employed in both the CV and DIA fields [Lowe, 2004, Leibe et al., 2006,
Jain and Doermann, 2012, Takeda et al., 2012|. We shall base our discussion on this sys-
tem architecture to explain in detail the context of our work and the connection of the two
parts of this work. The discussion of each component of this architecture is also given in
the following.

- - -p Offline processing
—» Online processing

Storing -

Local Keypoint|_ _ _, Keypoint |___p| Indexing |(___,| Indexed
Detector |—| Descriptor |—» Scheme — | Descriptors

T Matching l

Query image

Dataset

Applications (recognition,
retrieval, localization, etc.)

Figure 1: A typical architecture of a real time image processing system.

The first component is served as local keypoint detector. Local keypoints or local fea-
tures have emerged as a crucial research domain in the literature |Tuytelaars, 2007|. Over
the years, a large number of methods for local feature detection have been proposed and
widely used in various areas of activity such as image registration and object detection,
matching, recognition and retrieval. A local interest point or keypoint, by definition in the
CV field [Tuytelaars, 2007], is a point-like feature in image, which differs from its immedi-
ate neighborhood in terms of some image properties such as intensity, color, orientation,
texture, curvature. Keypoint detection is one of the most important topics in the CV field
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since keypoints are considered as useful features to address the problems of image matching,
object recognition and spotting, etc. For that reason, many techniques have been proposed
in the literature to detect different types of keypoint. Some examples of well-known key-
point detectors are Harris-Corner [Harris and Stephens., 1988|, SIFT [Lowe, 2004|, LOG
[K.Mikolajezyk and Schmid, 2001], SURF [Bay et al., 2008|.

Once the keypoints are detected, each keypoint is characterized by a descriptor as in-
dicated by the second component in Figure 1. Typically, a descriptor for a given keypoint
is constructed by extracting the local features within a local neighborhood. The common
local features are intensity, color, texture, orientation and shape distribution. The features
extracted for a given keypoint are then often represented by a feature vector or keypoint
descriptor. Some well-known examples of different types of descriptors are shape-based de-
scriptors (e.g., ShapeContext |Belongie et al., 2002|, Shapeme [Mori et al., 2001]), binary-
based descriptors (e.g., BRIEF [Calonder et al., 2010|, ORB [Rublee et al., 2011]), and
real-value descriptors (e.g., GLOH |Mikolajczyk and Schmid, 2005|, SIFT [Lowe, 2004]).
It is highly expected for a keypoint descriptor to meet the following basic properties:
rotation-, scale-, and translation-invariant. Depending on the application domains, other
complicated properties which might be needed are illumination-, affine- and viewpoint-
invariant. Furthermore, one of the most critical property of a keypoint descriptor is the
dimensionality. It is highly desired to design a keypoint descriptor such that it is distinctive
enough while retaining the dimensionality as low as possible. The reason of this is to gain
efficiency while performing the keypoint matching procedure. A reasonable dimensionality
of a local keypoint descriptor would be, perhaps, less than one hundred.

The third component aims at addressing the problem of fast matching to support
time-critical applications. Although the processing time can be addressed by reducing
the dimensionality of the keypoint descriptor, this process may not significantly decrease
time complexity of the system. Moreover, in many applications, the descriptor’s dimen-
sionality could be sufficiently high (e.g., > 100) in order to make the descriptors highly
discriminative. Therefore, a promising solution for fast matching of the descriptors would
be the use of an efficient indexing scheme. Basically, an indexing algorithm is formu-
lated as the task of reorganization of the data, such that it is able to produce quickly the
query of proximity search [Beis and Lowe, 1997]. Some efficient indexing schemes in the
literature are hashing-based approach (e.g., LHS [Indyk and Motwani, 1998|, Kernelized
LSH [Kulis and Grauman, 2009]), clustering-based approach (e.g., vocabulary K-means
tree [Nister and Stewenius, 2006], randomized K-medoids trees [Muja and Lowe, 2012]),
and space-partitioning-based approach (e.g., KD-tree [Friedman et al., 1977|, principal axis
tree [McNames, 2001]).

A new contribution on junction detection and characterization
in line-drawings

Even though a large number of methods have been introduced to deal with different
problems of keypoint detector, descriptor and indexing, these methods might not work well
for a particular kind of binary line-drawing images. Two main reasons are attributed to
this fact. First, it is very often the case that graphical line-drawing images are produced
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in the binary form in which the segmentation of background and foreground is obviously
clear. Second, the crucial content of graphical line-drawing images is constituted by line-
like objects or elongated shapes in which the line thickness is rarely thin (i.e., 1-pixel).
Particularly, a typical shape in line-drawing images would be composed of a set of adjacent
black pixels. Such a shape could be treated as a homogeneous region in CV. Hence,
edge detection in line-drawing images is a trivial task and the transition between the
background and the foreground is high and virtually similar in magnitude for every edge
point. As a result, the common keypoint detectors in the CV field, like blob-point detector
for instance, would produce a significant increase of the detected keypoints. Furthermore,
the distinctiveness of the detected keypoint would be highly dropped because of the poor
distribution of the local features (e.g., only two values: foreground and background) around
the detected keypoints.

To illustrate these issues, Figure 2 provides an example of the detected SURF key-
points for a typical natural image (a) and a line-drawing image (b). It was showed in
[Bay et al., 2008] that the detected SURF keypoints for natural images are distinctive and
robust. However, from Figure 2 (b), it is evident that lot of keypoints are detected when
applying the SURF detector for a line-drawing image even the image is composed of few
details.

@ (b)

Figure 2: Example of the SURF keypoints detected for: (a) a natural image; (b) a line-
drawing image; (the image (a) is reprinted from [Bay et al., 2008]).

The arguments above raise an interesting question: what would be the suitable features
for such kind of graphical line-drawing images? The answer is naturally related to the con-
tent of line-drawing images which are mainly composed of line-like objects. Hence, the
expected features would be basic primitives including straight lines, arcs, circles, curves,
quadrilaterals, etc. In fact, there is a strong evidence that much of work has been performed
to extracted these primitives in the literature [Han and Fan, 1994, Dori and Liu, 1999,
Song et al., 2002, Hilaire and Tombre, 2006]. Furthermore, these primitives have been ex-
tensively employed as interesting features to address different applications such as engineer-
ing drawings recognition [Yan and Wenyin, 2003| and symbol recognition /retrieval /spotting
[Dosch and LLados, 2004, Qureshi et al., 2008, Rusinol et al., 2010]. Among many differ-
ent types of basic primitives, junction point is an important feature in line-drawing images
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[Hilaire and Tombre, 2006, Zuwala and Tabbone, 2006]. Junction point serve as a "bridge"
point connecting different primitives. Therefore, the accurate detection of other primitives
is highly dependent on the correct detection of junction points. From Figure 3, it can be
noted that these junction points can provide effective and efficient features for describing
such a line-drawing document image.

Figure 3: Example of the detected junction points (small red dots) and junction arms
(green straight lines) for a line-drawing image.

. 8 47
a*s 29

Y -

Figure 4: Example of the junction points and junction characterization in the CV field;
(reprinted from [Xia, 2011]).

By definition in the CV field, a junction point is defined as the place of intersection of
at least two different edge directions in the image [Bergevin and Bubel, 2004]. In addition
to the detected junctions, it is desired to extract the junction parameters or junction
characteristics such as the number of branches of each junction, the strength and orientation
of each junction branch, and the local scale of the junction. It is worth mentioning that
there is a close relationship between the junction points and corner points. Although the
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terminologies of junction and corner are often interchangeably used in the CV field with
a little distinction, there in fact exists some important differences. In the first place, a
junction point could be considered as a corner point (i.e., L-, X-, Y-, T-junction), but the
converse is not necessarily true (e.g., an endpoint is most likely to be detected as a corner
point but this point is clearly not a junction point). In the other place, the characteristic
of each junction point also distinguishes a junction detector from a corner detector. As
argued in [Laganiere, 2004], a corner detector works as a two-stage process of estimating
a measure of corner response for every pixel, followed by a second stage of thresholding
to select the strongest corner candidates. On the contrary, a junction detector should
simultaneously perform both the tasks of detection and characterization or classification
of junction points.

Different approaches have been introduced to deal with the detection of junction points.
In the first place, the CV methods detect junction points as the meeting points of edge
lines. Such methods are not well adapted to graphical line-drawing images because of sev-
eral main reasons. First, few works [Faas and van Vliet, 2007, Bergevin and Bubel, 2004,
Deschénes and Ziou, 2000] discuss about junction characterization, which is very impor-
tant for junction features. Second, all of these methods are limited to single junction
detection, whereas it is very often for line-drawings to encounter a crossing zone which
contains multiple junctions as illustrated in Figure 5. Most importantly, the perception of
a junction point in the context of graphical line-drawing images is quite different from that
in the CV field. In line-drawings, junctions are treated as the intersections of median lines,
whereas the CV methods detect junctions as the intersections of the edges. This point, in
fact, makes the CV methods unsuitable.

—| T-junction
—1 L-junction

[ T-junction

(@) (b)

Figure 5: Example of multiple junction detection: (a) an input image containing a X-
crossing zone and its skeleton (thin white lines); (b) the vectorization presentation of (a)
with three detected junctions; (reproduced from [Hilaire and Tombre, 2006]).

On the other place, the problem of junction detection for graphical line-drawing images
has been mainly embedded in a vectorization system [Fan et al., 1998, Song et al., 2002,
Hilaire and Tombre, 2006]. The obtained results are therefore subjected to the error-prone
caused by the raster-to-vector conversion process. Moreover, such a vectorization system
has been known to be sensitive to setting parameters, and present difficulties when het-
erogeneous primitives (e.g., straight lines, arcs, curves, and circles) appear within a single
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document. Knowledge about the document content (objects, entities, document layout)
must be included and derived using an appropriate strategy to make the system more
robust at the cost of adaptability.

Considering all the aforementioned points, it can be noted that introducing a suitable
and efficient junction detection approach dedicated to line-drawing images would be highly
appreciated. Therefore, the first contribution of this dissertation is an attempt to bring a
robust and accurate approach for detecting and characterizing the junction points in line-
drawings. The proposed approach is evaluated using a wide corpus set of line-drawings.
Extensive performance evaluation is performed to study the behaviors of the proposed
system at different aspects. Comparative results are provided to demonstrate the strengths
and weaknesses of our system. Additional experiments at the application level are also given
to prove that our junction detector is robust and discriminated enough to be used in the
applications of symbol localization and spotting.

A new contribution on feature indexing

As illustrated in Figure 1, it is very often the case that the detected keypoints would
be associated with some features or local descriptors. Typically, these feature vectors are
computed using statistical histogram of local features within the neighborhoods around
the detected keypoints. In order to be highly distinctive for differentiating different ob-
jects, the dimensionality of a feature vector must be sufficiently high. However, this
raises an expensive computation cost for the subsequent steps of matching the feature
vectors and object retrieval/recognition. An efficient solution for this problem is known
as feature indexing. Hence, the second contribution of this dissertation is concerned
with the problem of indexing in feature vector space. Although a large number of in-
dexing algorithms have been proposed in the literature, few of them (e.g., randomized
KD-trees [Muja and Lowe, 2009], hierarchical K-means tree [Muja and Lowe, 2009|, ran-
domized clustering trees [Muja and Lowe, 2012|, and LHS-based schemes [Lv et al., 2007,
Kulis and Grauman, 2009]) have been well validated on extensive experiments to give sat-
isfactory performance of approximate nearest neighbor (ANN) search on some specific
benchmarks. However, the search performance of these indexing algorithms is still lim-
ited to the cases (e.g., word spotting, face detection, document retrieval) where a pretty
high search precision is desired (e.g., > 90%). Especially, for some applications (e.g., logo
recognition, handwriting identification, signature verification) where exact nearest neighbor
(ENN) search is required, these algorithms give little or even no better search performance
compared to the brute-force search.

To overcome such shortcomings, an advanced indexing algorithms in feature vector
space is proposed as the second main contribution in this dissertation. Particularly, a
new and efficient indexing algorithm is presented based on a linked-node m-ary tree (LM-
tree) structure. The proposed indexing algorithm works really well for both the ENN and
ANN search. Extensive experiments show that the proposed algorithm gives a significant
improvement of search performance, compared to the state-of-the-art indexing algorithms
including randomized KD-trees, hierarchical K-means tree, randomized clustering trees,
and multi-probe LHS scheme. To further demonstrate the outstanding search performance
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of the proposed indexing algorithm, an application of image retrieval is developed. In this
work, a wide corpus set of historical books of ornamental graphics is used to stress our
indexing system. Performance evaluation, carried out on this dataset, show the outstanding
search efficiency of the indexing system.

Organization of the thesis

The rest of this dissertation is organized into two main parts and one conclusion chapter.
A brief introduction of these parts is given hereafter.

e Part 1: In this part, the contribution on junction detection and characterization in
line-drawing images is presented in three chapters as follows:

— Chapter 1: A detailed review of state-of-the-art methods in junction detection
is presented in this chapter. The main characteristics of each method, the
connection among them, and the missing issues requiring further treatments are
carefully discussed.

— Chapter 2: The proposed approach for junction detection in graphical line-
drawing images is described in great detail in this chapter. Complexity evalua-
tion of the proposed system is included. Extensive experiments are performed to
study the behaviors of the proposed system in comparison with other methods.
Finally, the main contributions of the proposed junction detector are summa-
rized and the shortcomings are pointed out to identify further extensions.

— Chapter 3: In this chapter, the usefulness of the proposed junction detector
is evaluated at application level. For this purpose, an application to symbol
localization in line-drawing images is investigated. This application shows that
the junction features are useful and distinctive, and support the problem of
symbol localization/spotting in a very efficient way.

e Part 2: In this part, two chapters are presented for the second contribution of this
thesis on feature indexing. These chapters are shortly described as follows.

— Chapter 4: A deep review on state-of-the-art methods for feature indexing in
high-dimensional feature vector space is presented. The main ideas, advantages,
and weaknesses of each method are thoroughly studied. The highlight of an
advanced contribution for feature indexing is given as the conclusion of this
chapter.

— Chapter 5: In this chapter, a novel indexing algorithm called linked-node m-ary
tree (LM-tree) is presented. The main processes of tree construction and tree
traverse are carefully described to deal with both the ENN and ANN search.
Extensive experiments are carried out in comparison with the state-of-the-art
indexing schemes. At last, an application of image retrieval is provided to
demonstrate the effectiveness and efficiency of the proposed indexing algorithm.
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e Conclusions: In this chapter, the main contributions of the dissertation are sum-
marized. The merits and limitations of this work are also reviewed. Finally, possible
lines of improvement are given for future work.
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Chapter 1

State-of-the-art in junction detection

This chapter presents a deep review of state-of-the-art methods for junction detection.
The merits and weaknesses of each method are discussed in great detail. The interconnec-
tions among them are evaluated and the potential link to our subsequent contribution is
also justified.

1.1 Introduction

In the CV field, the junction points are often detected by finding the prominent points
in the image at which the boundaries of the adjacent regions meet as illustrated in Figure
1.1. The edges meeting at a junction point are regarded as the arms of the junction and
are used to characterize junctions into different types such as L-, T-, or X-junction.

It has been shown in the literature |Parida et al., 1998, Hansen and Neumann, 2004,
Biederman, 1986| that junction/corner points are important features for image analysis.
They are critical features for object recognition as suggested in [Parida et al., 1998|. In the
work presented in [Hansen and Neumann, 2004, Biederman, 1986], the authors studied and
demonstrated the importance of corner and junction points for human object recognition in
a number of psychophysical experiments. Especially, the work in [Biederman, 1986| showed
that object perception of line drawings is severely degraded when corners or high curvature
points are removed. In contrast, this perception is largely preserved when the parts of low
curvature are eliminated. Junction features have been used to address different applications
in the literature. [Mordohai and Medioni, 2004| employed junction inference for figure com-
pletion. [Rubin, 2001] performed a deep study of junction features for surface completion
and contour matching. The use of junction features for robotic weld seam inspection has
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Figure 1.1: The detected junctions (small red dots) and junction arms (yellow lines);
(reprinted from |Bergevin and Bubel, 2004]).

Junction Detection

/\

Computer Vision Document Image Analysis

Skeleton-based Contour-based
methods methods

v

Edge-grouping- Parametric-
based methods based methods Tracking-based
methods

Figure 1.2: Different approaches for junction detection in CV and DIA.

been proposed in [Sluzek, 2001]. Various works [Liu et al., 1999, Lin and Tang, 2002] for
stroke extraction and Chinese character recognition have been performed based on junc-
tion detection. A comprehensive study of the role of junction features can be found in
[Hansen and Neumann, 2004].

Despite abundance of the methods proposed in the CV field [Bergevin and Bubel, 2004,
Kothe, 2003, Maire et al., 2008, Parida et al., 1998, Deschénes and Ziou, 2000]| to detect
junctions, these methods can not directly applied to a particular kind of graphical line-
drawing images. The main reason is realized on the fact that the definition of junction
is different from that in the CV field. Particularly, a junction point is treated as the
intersection of at least two line-like primitives and the problem of junction detection is
usually formalized as finding the intersections of median lines in images. However, some
specific techniques in CV may be adapted to be part of a junction detector in line-drawings.
Therefore, it is of crucial important to identify such possible favourable techniques of the
CV for junction detection.
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In line-drawing images, junction points are processed with the regard to median lines.
Unfortunately, median line extraction is not a trivial task because of the well-known
problem of skeleton/junction distortion. One important reason of this problem is due
to the line thickness of the shapes. Line-drawings are often acquired using digitization
devices and thus the line thickness is rarely perfect (e.g., 1-pixel thickness). Consequently,
the median lines extracted at crossing zones are distorted leading to the false formal-
ization of junction points. For these reasons, dedicated methods [Dori and Liu, 1999,
Hilaire and Tombre, 2006, Liu et al., 1999, Song et al., 2002| for junction detection in line-
drawings have been mainly considered as a post-processing of a vectorization process.

This chapter describes state-of-the-art methods for junction detection including those
for natural images in CV and graphical line-drawing images in DIA. Our goal here is to
identify the potential techniques in CV that may be adapted to be part of a junction
detector in line-drawings, and to make the connection between the both fields. These
methods are briefly outlined as shown in Figure 1.2 depending on the application domains
and groups of methods. For the CV-based methods, the junction detectors can be classified
into two main approaches: edge grouping and parametric modeling. The other methods
are dedicated to line-drawing images including skeleton-based, contour-based and tracking-
based approaches. In the following sections, we will discuss the most representative works
for each of these classes.

1.2 Junction detection in computer vision

1.2.1 Introduction

A number of techniques have been proposed in CV field to deal with the problem of
junction detection. These methods are often classified [Parida et al., 1998 into two cat-
egories: edge-grouping-based and parametric-based. The former approaches are typically
composed of two stages. The first stage detects the edges in image by computing one or
several intensity-based gradient maps. The obtained edge maps are grouped in the sec-
ond stage to generate hypotheses about junction parameters (e.g., junction branches and
junction size). For the parametric-based methods, a junction model is first defined for
representing the junction characteristics. Next, the junction characteristics are derived by
fitting them to some energy functions. A brief list of the methods for junction detection
in CV is presented on Table 1.1, and they are detailed in the following sections.

Table 1.1: Related work for junction detection in computer vision
Approach References
Edge grouping [Deschénes and Ziou, 2000, Kothe, 2003, Maire et al., 2008,
Bergevin and Bubel, 2004, Laganiere and Elias, 2004, Xia, 2011]
Parametric- [Forstner, 1994, Parida et al., 1998, Sluzek, 2001,
based Tabbone et al., 2005, Kalkan et al., 2007|
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1.2.2 Edge-grouping-based methods

These methods are typically composed of two main stages. The first stage extracts
different edge maps in image by computing one or several intensity-based gradient maps.

The obtained edge maps are grouped in the second stage to generate hypotheses about
junction branches including the strength, orientation, and the number of the radial lines.
Next, junction points are reconstructed as the meeting points of the junction branches. A
summary of these methods are presented on Table 1.2 (page 34) along with the merits and
limitations of each method. We have based our discussion on different criteria as follows:

e Scale invariant: the ability of detecting the junctions at different scales.
e Multi-detection: the ability of detecting multiple junctions at a given zone.

e Junction characteristics: the ability of extracting junction parameters including the
number of junction branches, the strength and orientation of each branch, etc.

e Edge and branch detection: how the method detects the edge and junction branches.
e Branch grouping: how the edges are merged to form the junctions.

e Performance evaluation: which datasets and metrics are used to evaluate the perfor-
mance of the method.

In [Bergevin and Bubel, 2004], the edge points are first detected using several local
oriented-based filters [Heitger, 1995]. The detected edge points, which are of similar ampli-
tude and orientation, are grouped to form the potential junction branches. Next, a branch
grouping algorithm is presented applying to each region of interest (Figure 1.3 (A)). This
algorithm constructs a binary tree for hierarchically representing the local structure of the
edge points within the region of interest. At each level of the tree, the highest variance
axis obtained from principal component analysis (PCA) is selected to partition the edge
points into two sub-sets (Figure 1.3 (B, G11, G21)). This continues as long as the split axis
of the underlying subset satisfies the stopping criteria: it has a low spatial dispersion and
high occupancy rate. The spatial dispersion measures the uniform distribution of the edge
points and the occupancy rate measures the connectivity of the edge points projected on
the splitting axis.

Once the tree is constructed, the potential junction branches are detected as the split-
ting axes obtained during the tree’s construction (Figure 1.3 (Ga2, G32)), whereas the
rest of data are considered as noise (Figure 1.3 (Gs1)). The constructed branches are
finally analyzed to make a hypothesis about junction point (Figure 1.3 (C)). To do so,
the junction branches are first segmented as constant curvature primitives correspond-
ing to straight line segments and arc segments. An adaptive threshold computed from
contour density and average primitive fitting error is used to select the branches that
form a junction point centered on the region of interest under consideration. Junction
characterization is also obtained in this stage by determining the characterized primitives
passing through the junction location. The junction position is then further improved to
obtain a sub-pixel accuracy using an adaptation of the junction localization operator in
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Figure 1.3: Illustration of the process of branch extraction and grouping: (A) a ROI
in input image; (B) image decomposition using PCA; (C) the candidate branches and
junction; (reproduced from [Bergevin and Bubel, 2004]).

[Forstner and Giilch, 1987]. The demonstration of the proposed method on several simple
images are interesting but it is sensitive to a number of predefined parameters: the size of
the region of interests, and the thresholds of classifying the low spatial dispersion and high
occupancy rate. Figure 1.4 shows some examples of the detected junctions.

Figure 1.4: The detected junctions (small red dots) and junction arms (white thin lines);
(reprinted from [Bergevin and Bubel, 2004]).

[Deschénes and Ziou, 2000] presented a method for detecting specific junction types
in gray-level images including L-, X-, Y-, and T-junction, and line terminations. Given
the lines extracted from input image using some basic edge operator, the proposed method
computes the local curvature measure at each point and then partitions the line points into
two classes (i.e., low curvature point and high curvature point) based on a fixed threshold
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t.. Next, a new concept of low curvature endpoint is defined as a line point which has a
low curvature and belongs to a local neighborhood of a high curvature point. In Figure
1.5, Py is a high curvature point, and P, and P» are two low curvature endpoints. Starting
from every low curvature endpoint, the propagation of orientation vector is applied to
update the curvature of every line point (e.g., P3 in Figure 1.5(c)). This is accomplished
by compensating a weight computed as the difference in curvature of the orientation vectors
of the starting low curvature endpoint and another low curvature endpoint (e.g., v and
v3 in Figure 1.5(c)). Particularly, the curvature is updated for every line point P(x,y)
between the two endpoints P; and P, as follows:

C(P) =14 Cy(P) + s(vi,v3) (1.1)

where Cy(P) is the old curvature at P, and s(vi,v3) is computed as:

L G-
s(v1,03) =1 — |m—=——| (1.2)
[|vi] [0z ]]
N LERNE TNOM
ENE W = el I |
\\j, AR Py 7,0 |
+——== L JJ=I8 P
- o -
AR e R
% ST NN
[ [ 4 1A L] el B ]
(a) (b) (©)

Figure 1.5: Illustration of orientation vector propagation and curvature update: (a) orig-
inal orientation vectors; (b) v; is the orientation vector at the low curvature endpoint
P; (i = 1,2), and propagation of orientation vector starting from Pj; (c¢) update of the
curvature for every line point (e.g., P3) between the two point P, and P, using the dif-
ference in direction of the two vectors: v and v3 (e.g., dash lines); (reproduced from
[Deschénes and Ziou, 2000]).

After that, the junctions and line terminations are identified by extracting the local
maxima of the updated curvatures within a given neighborhood. The results presented
on several real and synthetic images show that the proposed method is able to localize
accurately the desirable junctions. Several weaknesses of this method are handling the
multi-endpoints in a given neighborhood and handling the size of the neighborhood. In
addition, some true junctions might be missed as only the point having maximum curvature
is selected among the local maxima of each neighborhood. The classification of low/high
curvature point is sensitive to the value of ..

[Kothe, 2003] introduced an integrated system for edge and junction detection with
boundary tensor computed based on the responses of polar separable filters. A boundary
tensor is a 2 X 2 matrix constructed from a combination of a structure tensor Tpqq (i.e., first-
order partial derivatives) and a Hessian matrix Teyep, (i-€., second-order partial derivatives)
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as follows:

1 tin ti2
Tboundary = Todd + ~Teven = (13)
4 tor o2

Such a tensor can be decomposed into two components:

Tboundary = lLedge T’junction = ()\1 - )\Z)G_ie_iT + A2 <(1] ?) (14)
where A1, A2 are the eigenvalues of Tyoundary, and €7 is the unit eigenvector associated
with )\1.

The first component, T¢44¢, encodes the 1-dimensional features (i.e., edge strength and
edge orientation) of the current point, while the second component, Tjynction, encodes the 2-
dimensional properties such as junction or corner features. Therefore, the junctions can be
detected as those points corresponding to the peaks of the second component (Tjunction)-
This boundary tensor is rotation invariant and provides satisfactory detection rate for
some common junction types such as L-, T- and X-junction. However, this approach is
subjected to several weaknesses, being scale-dependent and poor localization of the detected
junctions.

|[Faas and van Vliet, 2007| introduced a streamline method for junction detection and
classification in gray-scale images (Figure 1.6). The proposed method first computes vector
fields using the eigenvectors corresponding to the smallest eigenvalues of the structure ten-
sors. Next, the vector fields are linked to form the streamlines. More precisely, a streamline
is mathematically defined as a curve whose every point is tangent to a local vector field
(Figure 1.6(a)). A new measure of partial distance d,q(s) between two streamlines P and
@ is defined as the distance of the line connecting two points P(s) and @Q(s) where s is a
tracking size relative to some pivot point P(0) or Q(0) (Figure 1.6(b)). The basic idea of
the junction detection algorithm is that two streamlines originating from P(0) and Q(0)
within a local neighborhood of a junction can end up in two different directions with a
significant distance dp,(s). By summing up the distances dp,(s) of the streamline passing a
pivot point P(0) and the other streamlines within a local neighborhood N, a new measure
of streamline divergence (d,) is derived as follows:

dp = Z dpq (1.5)

qeN

The size of the neighborhood (N) is treated as the local scale and determined as the
longest diameter, dpq., of the common zone shared by the incident streamlines (Figure
1.6(c)). The junction locations are then detected as those areas having high responses of
the streamline divergence. However, such a measure of streamline divergence is quite sen-
sitive to noise. To alleviate this matter, the authors suggested weighting these responses
by the certainty of the Hessian matrix. In this way, the responses of streamline divergence
corresponding to the background are degraded close to zero. The junctions are then iden-
tified as the centers of gravity of the intersection regions. This method is also subjected to
several weaknesses being sensitive to the determination of the pivot points and the selection
of the parameter s (i.e., s = 7,8 in their experiments).
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Figure 1.6: (a) Vector fields (gray short bars) and streamlines (green lines); (b) the partial
distance between two streamlines at a relative tracking size s; (c) local scale estimation;
(reproduced from [Faas and van Vliet, 2007]).

The work in |Laganiere and Elias, 2004| detects the junctions based on intensity gra-
dient. The proposed approach constructs two binary images B and B as follows:

e B is formed by thresholding the gradient image with a threshold ¢p.

e BT is formed by looking for local maxima in the direction of gradient.

Next, for each point p € B, a list C4 containing the anchor points ¢; € BT is constructed
by choosing the point ¢; lying in the boundary of the circle centered at the point p with a
radius r (Figure 1.7).

q2

@) (b)

Figure 1.7: (a) An input image with a Y-junction; (b) three anchor points ¢1, q2, ¢s3;
(reprinted from [Laganiere and Elias, 2004]).

Each line dg, connecting an anchor point ¢; € C4 and the corresponding center point
p is treated as a candidate junction branch. A candidate branch dg, is accepted as a
valid junction branch if there exists a continuous path of points in B so that the distance
from each point to dg, is less than 1 pixel. For such a branch dg,, the strength of dg, is
defined as the sum of squared distances of each point in BT to dg,. The strength of dgp
is then normalized based on the length of dg,. Next, every valid junction branch having
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the strength less than a threshold ¢ is discarded. Finally, the junctions are detected as
the points having more than two valid junction branches. In the case of a 2-junction
(i.e., junction formed by exact two branches), an additional step is applied to verify that
this junction is not a straight line segment. Limited experiments have been provided to
demonstrate the performance of the method. This method is sensitive to the selection of
the parameters: tp, ts, and 7.

[Maire et al., 2008| presented a new method for contour and junction detection in nat-
ural images. The contours are first detected by combining local features (i.e., brightness,
color, texture gradients) and global features (i.e., generalized eigenvectors obtained from
spectral clustering) to form a globalized probability of boundary. Next, the obtained con-
tours are segmented into a set of straight line segments using a polygon approximation
technique. A final process of line segment grouping is performed using an EM-like tech-
nique. This iterative process works based on the idea that if we know the position of the
junction, the associated line segments passing through this junction could be easily identi-
fied and vice versa. The algorithm is therefore composed of two iterative steps: estimating
an optimized location of the junction within a local neighborhood and updating the weights
based on the distances of the newly derived junction to the contour segments nearby. The
main idea of this junction optimization method is outlined below:

e Step 1: Estimate an optimized location J of the junction within a neighborhood N:
n

J = i o+ d(Cy, J 1.6

arg{,rélﬁiz_;wz* (Ci, J) (1.6)

where C; is a contour segment, n is the number of the contour segments, w; is the
weight associated to the contour Cj, and d(Cj, J) is the Euclidean distance from J
to Cz

e Step 2: Update the weights based on the strengths (i.e., |C;|) of the contour segments:

_d(Ci7 J)

w = (G- exp(Z= ) (1.7

where € is a distance tolerance determined empirically.

e Step 3: Repeat Step 1,2 until the junction J converges to a fixed point or until a
number of iterations is done.

This method assumes that each neighborhood N contains at most one junction point
and thus it is not able to detect multiple junctions, if any. Besides, it is subjected to
high computation load because the size of the neighborhood must be sufficiently large to
ensure that it is less impacted by the error-prone introduced by the previous step of contour
detection. The authors suggested choosing the neighborhoods around the terminations of
the contour segments. In addition, the reweighting step (i.e., Step 2) does not consider the
weights accumulated during the previous iterations. This omission may lead to incorrect
junction convergence for the case that all the contour segments has the same strength.
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The proposed method has been evaluated on the BSDS benchmark dataset! using the
F-score metric. The BSDS is composed of 300 natural images whose boundaries have been
manually segmented by different human subjects. From the ground-truth segmentations,
the 3-junctions were extracted as the places of intersection of at least three regions. The
2-junctions were also extracted as places of high curvature points along the contours hand-
drawn by the humans. Combination of these two types of junctions is served as junction
ground-truth. Precision, recall, and F-score were employed as evaluation metrics where a
true detection is validated if the distance between the detected junction and the ground-
truth one is smaller than 6 pixels. The obtained results are quite interesting with F-score
= 0.41 compared to the human agreement of F-score = 0.47. An example of detected
contours and junctions is shown in Figure 1.8.

(b)

Figure 1.8: (a) An original image; (b) the detected contours (thin lines) and junctions
(asterisk marks); (reprinted from [Maire et al., 2008]).

Recently, [Xia, 2011] introduced the concept of meaningful junctions based on the a
contrario detection theory originally proposed by [Desolneux et al., 2000]. This detection
theory basically states that an observed image feature is meaningful if it is unlikely to
occur randomly under some null hypothesis Hy. The advantage of the a contrario theory
is that it provides a way of automatically computing the threshold for creating a binary
decision for determining a meaningful junction point. This is accomplished by controlling
an expected number of false detections. Scale invariant was achieved by employing a multi-
scale approach. Experiment was performed on the BSDS benchmark, and the comparative
results are summarized on Table 1.3. One of the advantages of this method is that it requires
fewer parameters, while detecting accurate junction points. Although the proposed method
employs multi-scale approach to detect the junction, the first step of local normalization
of gradient is scale-dependent (the neighborhood size was fixed at 5 x 5). Therefore, the
detection rate is sensitive to the parameter tuning. Actually, the proposed method achieved
the F-score of 0.38 with respect to the neighborhood size of 11 x 11.

In summary, we will highlight hereafter several key remarks. For performance evalua-
tion, since there is a lack of standard benchmarks for the junction detection algorithms, it
gives a rise of difficulties to evaluate the real performances of the existing works. Most of
the existing methods performed the experiments on their own and pretty small datasets.
No evaluation metrics and no comparative results were reported for performance evaluation

Lwww.cs.berkeley.edu/projects,/vision/grouping /segbench /

41



1.2. JUNCTION DETECTION IN COMPUTER VISION

Table 1.3: Performance evaluation of the junction detectors.

’ System ‘ Dataset ‘ F-score
[Xia, 2011] BSDS | 0.38
[Maire et al., 2008| BSDS 0.41
[Harris and Stephens., 1988] | BSDS 0.28
Human agreement BSDS 0.47

except the works of [Maire et al., 2008, Xia, 2011]. Typically, these experimental results
were carried out by visually showing the detected junctions for few test images. Although
[Maire et al., 2008| have recently provided the BSDS benchmark for the field, limited per-
formance evaluation of different techniques has been carried out. Only [Xia, 2011] reported
their results on this benchmark in comparison with the work of [Maire et al., 2008] and a
classical Harris corner detector. General speaking, these works achieved quite good results
with respect to the human agreement in terms of junction detection. [Maire et al., 2008]
obtained better results than the two others probably due to combining local and global
cues in contour detection.

It can be concluded that there are two main challenges for the edge-grouping-based
junction detectors. The first one concerns the extraction of junction branches from image
features such as local curvatures or local gradients [Bergevin and Bubel, 2004, Kéthe, 2003,
Faas and van Vliet, 2007]. However, these basic features are sensitive to contrast change
and noise. To alleviate this problem, [Xia, 2011] normalizes the extracted gradients using
the mean and standard deviation of local gradient within a local neighborhood. The ob-
tained results showed that the proposed system is quite robust to the contrast change, but it
is subjected to the proper setting of the size of the local neighborhood. [Maire et al., 2008|
proposed a more robust approach by combining the local and global cues for contour ex-
traction. They obtained the best results in terms of junction detection for their benchmark
dataset.

The second challenge of every edge-grouping-based junction detection method is the
selection of junction branches to form a junction. Typically, this is accomplished by
thresholding and grouping the survived branches nearby. Consequently, this gives an-
other difficult issue: the selection of a proper distance threshold. A high value of the
distance threshold will reduces the false detections but may miss some true junctions,
and vice versa. Some methods just empirically fixed these values as in the cases of
[K6the, 2003, Laganiere and Elias, 2004, Maire et al., 2008]. Interestingly, [Xia, 2011] ex-
ploited the a contrario detection theory for junction branch grouping provided in advance
the expected number of false detections. That said, given a specific number of false de-
tections, the junction detector can automatically decide which points are likely to be the
useful junctions. [Bergevin and Bubel, 2004| addressed this matter by adaptively deriving
the distance thresholds based on the local contour density and average primitive fitting
error obtained previously.
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1.2.3 Parametric-based methods

In the preceding section, we described the methods that detect junctions based on
branch detection and branch grouping. In this section, we are going to discuss the most
representative parametric-based methods for junction detection. For the parametric-based
methods, a junction model is first constructed. This model formalizes the junction pa-
rameters including junction’s location, junction’s scale, orientation and magnitude of each
junction branch, etc. Next, these parameters are derived by fitting them to one or several
energy functions designed to explicitly reflect the junction model.

Table 1.4 summaries some typical parametric-based methods for junction detection.
The first three evaluation criteria have the same interpretation as presented in Table 1.2
(page 34), whereas the last ones indicate the main idea of the parametric-based methods
such as the definition of junction model and model fitting. The detail of each method is
given in the paragraphs thereafter.

|[Forstner, 1994] introduced a general framework for low level feature extraction such
as corners, junctions, edge points, and circular symmetric features. Particularly, the au-
thors introduced some local image characteristics such as the average squared gradient
and regularity measure. The average squared gradient is defined as the convolution of a
2 x 2 squared gradient matrix to a rotationally symmetric Gaussian function. By analyzing
the eigenvalues and eigenvectors of the resulting matrix, the corners and junctions can be
detected as those having large values of the two eigenvalues A1 and As.

The regularity measure is designed to estimate the location of the junctions and circular
symmetric features. Given a local patch centered at p, the regularity measure S(p, o) is
defined as follows:

S(p.0) = / / (p, 9)|IVg(@)]2Collp — all)dg (18)

where d(p,q) is the Euclidean distance between p and ¢, and [|[Vg(q)|| is the gradient
magnitude at ¢, and G, is the Gaussian function.

The accurate location of the junction and corner candidates can be obtained by min-
imizing the regularity measure within a 3 x 3 window. Figure 1.9 shows an illustrative
example where all the corners and junctions are correctly detected. However, in con-
trast to edge-grouping-based methods, all the steps of the proposed method purely rely
on low-level feature extraction without incorporating high-level processing or scene knowl-
edge analysis. Hence, the method is sensitive to noise. To alleviate this problem, image
smoothing using Gaussian function can be applied, but it raises another concern of scale
selection.

[Parida et al., 1998] formalized a junction model as a small disk of image in which
the intensity values are piecewise constants in the incident homogeneous regions (i.e., the
wedges) pointing towards the center of the disk (Figure 1.10). Particularly, the junction
model involves the following parameters: the central point, the radius of the disk, the
number of wedges, the intensity value in each wedges, and the junction branches separating
two adjacent wedges.

Typically, a junction model is formalized as an energy function:
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(@) (b)

Figure 1.9: (a) An input image; (b) the detected corners and junctions (small black dots
on the right figure); (reprinted from [Forstner, 1994]).
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Figure 1.10: Ilustration of a piecewise constant model of a 3-junction: (a) the junction
model in the image plane; (b) the junction model formulated as a piecewise constant
function; (reproduced from |Parida et al., 1998]).

E=M+FE (1.9)

The term R (i.e., Equation 1.10) is regarded as the radial variation of intensity, and is
constructed as the sum of weighted squared gradients within a local neighborhood. The
gradient at a given point (r,6) is weighted by the squared distance of the center of the
neighborhood to that point, where (r,6) is polar coordinate of the point.

T 21
R(r) = /0 /0 52(%)%349 (1.10)

The R(r) behaves similar to that of the regularity measure in [Forstner, 1994|: it moves
towards a minimum value at a junction location. Therefore, the precise location of a
junction can be derived by finding the point which has a minimum R(r) within a local
neighborhood. Also, the scale of a junction can be estimated by thresholding the relative
error eg(r) defined as follows:
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63(1") — §R§R(r)

R <" (1.11)

where 7 is a fixed threshold.

The term E is used to estimate the junction characteristics including the number of
junction branches (n), the orientation of each branch 6; with ¢ € {1,...,n}, and the
intensity 7; in each junction wedge. These junction parameters are derived using the
following procedure:

e Fix the number of junction branches, say that n.
e Uniformly sample the range [0, 27| into d regular intervals.

e Explore all possible discretized sets of the angles 0, with i = 1,...,n, and look for
the solution that minimize the fitting energy E.

In the procedure above, the fitting energy E' is formalized as the sum of squared
differences of the data intensities and the fitted values T;(s). Assume that the orientations
0, (s) are known, the fitted intensity 7; can be estimated as the average value of the data
in the corresponding wedge. However, it still needs to determine the optimized number of
junction branches. This is accomplished by varying the value n and measuring the decrease
in the optimized energy E". The optimized number of junction branches is derived if the
following relative error (") is small enough:

—n+1

E
r" = = < Te (1.12)

where 7, is a fixed threshold. In their experiments, with a fixed setting for the two
thresholds: d = 16, 7, = 2.1 and 7. = 0.4, the authors provided some illustrative results
using several synthesized and real images (Figure 1.11).

[Sluzek, 2001] formalized a junction model as a summation function g(f) of image
intensity along a given angular direction 6 within a local circular window of size R (15 <

R < 30).

+7 R
g(0) = / / I(rcosa,rsina)d(a — 6)drda (1.13)
=—m Jr=0

where (r,«) is the polar coordinate of a point, and J(z) is equal to either 1 or 0 taking
into account x = 0 or = # 0.

The local function g(#) is computed for every edge point yielding a 1D profile repre-
senting the characteristics of a junction, if any. At a junction location (Figure 1.12), such
a 1D profile presents several spikes and the position of spikes indicates the geometry of the
junction. Identification of spikes is not an easy task since it is a highly threshold-dependent
process. The authors suggested two-step normalization process for dealing with this issue.
The first step is to normalize the response of g(6) inversely proportional to the number of
pixel in the local window, and the second step is to rescale this response proportionally to
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(b)

Figure 1.11: Examples of detected junctions: (a) 2-junction points; (b) 3-junction points;
(reprinted from [Parida et al., 1998]).

the number of junction branches. A final process of template matching is applied to mea-
sure the dissimilarity scores between the junction profile and the model junction profiles.
By thresholding these dissimilarity scores, the junction is either accepted or rejected. Few
test examples were used to demonstrate the performance of the proposed method.

g(6)

@

L 0
-90 0 90 180
(b)

Figure 1.12: (a) An ideal L-junction point; (b) the ideal response of a 1D profile for the
L-junction point; (reproduced from [Sluzek, 2001]).

[Kalkan et al., 2007] proposed two new improvements enabling a classical corner de-
tector (Harris |[Harris and Stephens., 1988|, SUSAN [Smith and Brady, 1995|, etc.) to be
a semantic junction detector. The first advancement concerns improving the location of

the detected corners. This is accomplished by designing a new measure of intersection
constistence (IC), which is similar in spirit to the function R(r) in [Parida et al., 1998|:

1060 = [ can(®)(1 = o) /dr.p))dp (1.14)
peE
where the involved parameters are described as follows:

e p. is the center of some local image patch P;
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e p is an image pixel in P;

¢;1p is the gradient strength of p;

l, is the line passing p with a slope of 6, computed as the local orientation at p;

e d(x,p.) is the Euclidean distance between p. and x.

The IC(p.) could be interpreted as a measure of how the pixels in P pointing towards
the center p.. Therefore, IC(p.) will be high if P contains one local line passing p. or p, is a
junction formed by the intersection of several edge lines. Thanks to this characteristic, the
improved location of a corner ¢ is achieved by looking for a point having local maximum
IC within a local neighborhood of q. The second improvement concerns the estimation of
junction characteristics such as junction branches and the strength of the branches. This
is accomplished by clustering and thresholding an energy histogram over the junction-
relative orientations (i.e., essentially similar to the function ¢g(#) in [Sluzek, 2001|). The
experimental results showed a significant improvement of junction localization and junction
characteristic compared to the Harris and SUSAN corner detectors.

[Tabbone et al., 2005] carried out an in-depth study of the behavior in the scale space
of the extrema of Laplacian of Gaussian (LoG). Different junction models have been in-
vestigated including linear junction models, non-linear junction models, and linear junc-
tion multi-models. Here, a linear model is concerned with the straight edges forming the
junction, whereas a non-linear model is associated to the curved straight edges. For the
linear junction multi-models, two models are considered including infinite and finite mod-
els. They are called multi-models as each contains several adjacent L-junctions. Based on
these behaviors, several key conclusions have been drawn:

e Each of these junction models contains at least one LoG extremum point inside the
junction sectors;

e The LoG extrema inside the sectors of a junction model are very robust even if the
junction model is distorted by geometric transformation and illumination change;

e These LoG extrema can be good starting points to detect junction points.

Although the authors concluded that the LoG extrema are reliable to detect junction
points, they did not provide any hints on how to detect the junctions from these extrema.
Furthermore, it was concluded that each junction model provides one or several extrema
inside the junction sectors but the converse is not studied. More precisely, the LoG extrema
appear not only inside the junction sectors but also at different locations. This indeed raises
a real challenge as we do not know yet a criterion to justify whether a given LoG extremum
point does appear inside a junction sector nearby or it does not.

In summary, the parametric-based methods work from a junction model following model
fitting for junction optimization. The junction model can be constructed as a corner model
[Forstner, 1994, Kalkan et al., 2007], a piecewise constant function [Parida et al., 1998], or
a local 1D orientation profile [Sluzek, 2001|. For the model fitting, [Parida et al., 1998,
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Kalkan et al., 2007|] employed the same criterion (i.e., regularity measure) originally de-
veloped by [Forstner, 1994|. This criterion measures the regularity distribution or in-
tersection consistency of local intensities within a neighborhood. However, the original
work of [Forstner, 1994] is limited to simple junction detection without junction char-
acterization, whereas the later works presented robust techniques to estimate junction
parameter using dynamic programming [Parida et al., 1998] or semantic interpretation
[Kalkan et al., 2007|. Automatic scale selection was addressed in [Parida et al., 1998], but
not discussed in [Forstner, 1994, Kalkan et al., 2007, Sluzek, 2001].

1.2.4 Conclusions of junction detection methods in CV

To conclude this section, we shall highlight hereafter several key remarks for both the
merits and weaknesses of the existing methods. At first, most of these methods are scale-
dependent, and restricted to limited experiments without comparative evaluation with
other methods. Experimental results have been mainly performed by giving some illustra-
tive results of the detected junctions for few images. Limited comparisons have been carried
out merely using the F-scores on the BSDS benchmark [Maire et al., 2008, Xia, 2011|. Few
works [Faas and van Vliet, 2007, Bergevin and Bubel, 2004, Deschénes and Ziou, 2000] dis-
cuss junction characterization, which is very important for junction features. Furthermore,
the CV methods for junction detection are too much dependent on the analysis and ex-
traction of junction branches. Most of these methods address this matter using the local
features and thus are sensitive to noise. The use of combined local and global features
has been proposed in [Maire et al., 2008| to make this stage much more robust. Besides, a
number of parameters are needed for these methods. Interestingly, the use of the powerful
a contrario detection theory for junction branch grouping has been shown to give quite
good results. Finally, all of these methods are limited to single junction detection in the
senses that the considering region of interest contains exactly one junction point.

1.3 Junction detection in graphical line-drawing images

1.3.1 Introduction

In contrast to the definition of the junction point in CV, the junction points in line-
drawings are treated as the meeting points of the median lines. However, the task of
extracting median lines is not trivial. To be more specific, the major problem is the
sensitiveness to small perturbations of the shape boundary and the line thickness of the
shapes. This matter results in unwanted skeleton branches which pose another serious
problem of junction distortion. That is, both the position of skeleton and junction points
are not correctly extracted. Despite of these weaknesses, several methods for junction
detection are skeleton-based. The methods start from skeleton and incorporate high-level
post-processing steps to correct the junction location. Other works, which try to avoid the
problems resulting from skeletonization step, are based on contour matching and element
tracking. Table 1.5 summaries these approaches and the details are discussed in the next
sub-sections.
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Table 1.5: Related work for junction detection in document image analysis
Approach References

Skeleton- [Nagasamy and Langrana, 1990], [Janssen and Vossepoel, 1997],
based [Liu et al., 1999], [Hilaire and Tombre, 2001],
[Hilaire and Tombre, 2006]

Contour [Hori and Tanigawa, 1993, Han and Fan, 1994, Lee and Wu, 199§],
matching [Fan et al., 1998, Ramel et al., 2000]

Element [Van Nieuwenhuizen and Bronsvoort, 1994, Chiang et al., 1998,
tracking Dori and Liu, 1999, Song et al., 2002]

1.3.2 Skeleton-based methods

In shape analysis, the term "skeleton" of a shape is referred to a thin representation of
the shape that is equidistant to its boundaries. As argued by |Bai et al., 2007], the skeleton
of a shape should meet the following properties:

e Preserve the topology of the original shape,

Extract accurately the location of skeleton points,

Robust to small distortions of contours and geometric transformations,

Reversible,

Represent significant visual parts of the shape.

A comprehensive survey for these methods can be found in [Lam et al., 1992|. Some
common approaches for skeletonization are based on iterative thinning [Rosenfeld, 1975,
Kwok, 1988], Voronoi diagrams [Néf et al., 1997, Ogniewicz and Ilg, 1992, veinerization
[Deseilligny et al., 1998|, and distance transform [Niblack et al., 1990, di Baja, 1994|. Ta-
ble 1.6 summarizes the main features of the traditional skeletonization approaches. Itera-
tive thinning algorithms extract the skeleton by recursively removing the outer boundaries
of the object. The resulting skeleton is connected and preservers the topology of the orig-
inal shape, but it is sensitive to small distortions of boundaries. The veinerization-based
technique [Deseilligny et al., 1998] constructs a graph containing rich topological informa-
tion of the object that is useful to extract different levels of skeleton. The final results
are depending on specific applications. For instance, one can select a particular parameter
setting to obtain skeleton satisfying one or few specific properties. The Voronoi diagram
methods partition the image into regions, each of which is closer to a particular pivot point
than others. The pivot points are selected on the boundaries of the object. The skeleton
is obtained by extracting the boundaries dividing the regions. The distance transform
based methods calculate the shortest distance of each foreground pixel to the background.
The skeleton is extracted by finding the pixels having local maximal distance transform.
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Consequently, the resulting skeleton is not connected, and an additional step of linking the
skeleton points must be incorporated.

Table 1.6: Comparison of different skeletonization approaches

Approach Geometry Reversible Junction Complexit
PP invariance ability accuracy P Y
Iterative .
thinning Yes No Low High
YOron01 Yes Yes Low High
diagrams
Veinerization Yes Yes Medium High
D;
istance Partial Yes Medium Low
transform

Despite a large number of existing methodologies for skeletonization, it is difficult to ob-
tain a satisfactory skeletonization algorithm as argued by [Deseilligny et al., 1998]. Recent
advanced methods for skeletonization are presented by [Bai et al., 2007, Aslan et al., 2008,
Shen et al., 2011, Ward and Hamarneh, 2010]. [Bai et al., 2007| proposed a new skele-
tonization method using contour partitioning obtained by discrete curve evolution (DCE).
The DCE algorithm starts from a polygonal approximation of the contours and iteratively
simplifies the boundary polygon. [Aslan et al., 2008 extracted the disconnected skeleton
segments for a single shape at a coarse scale. This method successively smoothes the
contours until the resulting shapes are simple enough. The skeleton segments are then
detected as the symmetry points from the smoothed curves. To make the system more
robust to contour distortion, some skeletonization methods [Ward and Hamarneh, 2010,
Shen et al., 2011] introduce the concept of branch significance measure to prune the spu-
rious skeleton branches. Although the obtained results are promising, these methods are
not related to the junction detection problem and are thus not suitable when dealing with
complex and distorted junction in line-drawing images.

In summary, despite a large number of existing methodologies, it is difficult to obtain
a satisfactory skeletonization algorithm satisfying the aforementioned properties. Besides,
the major problem of skeleton distortion and junction distortion at crossing or irregular
zones has not been thoroughly addressed. For these reasons, the skeleton-based methods
for junction detection need to incorporate high-level processing steps to correct the loca-
tion of junction points [Liu et al., 1999, Hilaire and Tombre, 2006]. Such methods work
by extracting the skeletons of input image, following a skeleton segmentation and pivot
point extraction (e.g., high curvature points). Next, the obtained skeleton segments and
pivot points are refined by incorporating some heuristic merging rules. Some specific post-
processing steps are applied to handle particular junction areas. Finally, the junction points
are detected as the intersections of the skeleton segments, in combination with the retain-
ing pivot points. Table 1.7 briefly describes such methods where the first three criteria
have the same meaning as those in the Table 1.2 (page 34), and the two last ones indicate
the ways of computing the thresholds for junction merging and junction treatment.

[Nagasamy and Langrana, 1990] proposed a method dedicated to preprocessing and
vectorizing engineering drawings. At first, some basic steps such as noise removal and hole
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Table 1.7: Skeleton-based methods for junction detection

Nagasamy and Janssen and Liu ot al Hilaire and
Features Lar;g ranayl 990 Vossepoel, 1999 v Tombre, 2001,
grana, 1997 2006
Scale invariant No No No Yes
Multi-detection No No Yes Yes
Junct?on . No No Partial Yes
characterization
_ Threshold for Fixed Fixed Fixed Fixed
junction merging
Junction Spf.itlajl Maximal Criterion A Topologlcal
treatment rule continuity morphology correction

filling are applied using morphological filters. Next, thickness layer separation is employed
to separate the thick objects (e.g., filled areas, arrows, blobs) from the thin line structures
from which the skeleton is extracted. At a crossing zone, the skeleton segments are merged
to preserve the spatial continuity of the relevant lines. As illustrated in Figure 1.13, the
step of merging the skeleton segments is accomplished by first identifying the incident lines
at a given junction and then pairing the lines based on the continuity criteria such as the
slope and local curvature at the junction.

.-"r'_"\

Junction {<—

(@) (b)

Figure 1.13: (a) The skeleton of an input image; (b) the lines 1 and 2 are grouped (similar
to the lines 3 and 4) based on their similar spatial continuity (dash line); (reproduced from
[Nagasamy and Langrana, 1990]).

In the next stage, each skeleton line is vectorized by a two-step procedure. The first step
detects the dominant points from the skeleton line as illustrated in Figure 1.14 (a-b), and
the second step tries to fit the curve segments bounded between two successive dominant
points to the arc primitives, if any (Figure 1.14 (c)). The rest of the skeleton line, which can
not be fitted by some arc primitives, is fitted to one or several straight line primitives. Part
of the dominant points retained after the vectorization process can be treated as 2-junction
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points (e.g., like L-junctions) as shown in Figure 1.14 (c). Since the distorted skeleton
parts appearing across the junctions are still included in the skeleton lines, the fitting-
based vectorization process is affected. Besides, the location of the obtained junctions is
displaced since no correction of junction location is performed.

Cs Cs Cs Line Cq

Ci: initial Remaining dominant

dominant points C, points after primitive 3§ C,
fitting.
Line
03 ®C, ® C,;
(a) (b) (©)

Figure 1.14: (a) The skeleton of an input image; (b) the initial dominant
points; (c) the remaining dominant points after primitive fitting; (reproduced from
[Nagasamy and Langrana, 1990]).

[Janssen and Vossepoel, 1997] presented a coarse-to-fine approach for obtaining the vec-
torization and anchor points of input images. First, the skeleton of an input image is
coarsely vectorized using a polygon approximation technique [Douglas and Peucker, 1973]
with a large threshold £4, coarse- This step will result in a set of dominant points including
the endpoints, corners, and junctions. Next, these dominant points are refined by moving
them to "correct" location using the mazimal threshold morphology. This process of refin-
ing the location of a dominant point is illustrated in Figure 1.15, where (a) is an original
image, and (b) is its coarse vectorization results including two line segments (black thin
lines) and an initial pivot point (red dot). The process of refining the dominant point is
summarized as follows:

e Construct a structuring element corresponding to the current location of the domi-
nant point and the two line segments within a local window. The structuring element
contains three values {1,0, —1} corresponding to the black pixels, white pixels, and
gray pixels as shown in Figure 1.15(c). This structuring element is constructed in a
particular way to reflect the approximate shape of the input image given a current
skeleton vector.

e Search for a black point within the local window which corresponds to the maximal
threshold morphology. To be specific, the structuring element is convolved with the
original image and the maximal value is set as the threshold for selecting the output
points. In Figure 1.15(d), there is only one point whose value is equal to the maximal
threshold.

e Update the obtained point as the new dominant point and repeat the two steps above
until the dominant point converges to a fixed location. That is, the distance of the
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dominant points found during two successive iterations is less than a fixed threshold
(Figure 1.15(f)).

Original image Initial structural element New structural element

/
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i New pivot point
Initial pivot point after 1% iteration

(b) (d) ®

Final pivot point

Figure 1.15: The process of refining the location of a dominant point; (reproduced from
[Janssen and Vossepoel, 1997]).

After that, the corrected dominant points so-called anchor points are used to correct the
subsequent step of refining the vectorization results. This is accomplished by re-performing
the polygonal approximation step of the skeleton with a sufficiently small threshold t4,,
following a post-processing step of removing false dominant points. The post-processing
step works based on several heuristic rules:

e A dominant point is removed if the distance to the closest anchor point is less than
a fixed threshold;

e Two T-junctions are merged to form an X-crossing if their distance is less than a
fixed threshold;

e A link dominant point is discarded if the bend angle is small enough.

Since these rules are mainly relying on several fixed thresholds, the obtained results are
sensitive to the parameter setting. Figure 1.16 gives an example of the results obtained
by applying these rules. From Figure 1.16, it may be noted that many false anchor points
were detected.

[Liu et al., 1999] introduced a new set of feature points, S,, computed based on the
crossing number N.(P) for a given binary-value pixel P as follows:

Sy, = Se U (S, N S3) (1.15)

Sz = {P[|(Ne(P) = 3) or (Ny(P) = 4)} (1.16)
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Figure 1.16: Fraction of the obtained vectorization where the false anchor points are marked
with the circles (reproduced from [Janssen and Vossepoel, 1997]).

8
1
Ne(P) =5 > |Piy1 — P (1.17)
0

where S, is the set of endpoints, 5 is the set of black points, S5 is the set of crossing
points, and Np(P) is the number of the black adjacent points of a black point P.

The set S,, in conjunction with the dominant points obtained from a polygonal ap-
proximation step, are represented by a geometrical graph. This graph is then used in
accordance with a criterion, called Criterion A, to correct spurious junction points (i.e.,
fork points in the notation of their paper). The basic idea of the Criterion A is that two
junctions P; and P, are merged if there exists a point P* belonging to P, P> such that for
every branch B originating from P; (i = {1,2}) except the branch P; Ps:

e These is a straight line segment P* P, fully included in the black region of the image
and the length of P* P, is sufficiently long; or

e These is a straight line segment P* P, fully included in the black region of the image
and P, is a termination point of the branch B.

In the experiment, the authors suggested choosing P, as a point in the branch B.
Figure 1.17 (a) gives an example where the Criterion A is successfully applied to merge
two junction points. However, this criterion is less effective when dealing with different
thickness and degraded objects. Figure 1.17 (b) illustrates such a situation where two
junction points P; and P» are merged even that their location is far from each other.

The work presented in [Hilaire and Tombre, 2001] detects junctions based on topolog-
ical correction of vectorization results. In their work, each skeleton branch is segmented
into line and arc segments using a sampling method. Considering the segmentation of line
segments, for instance, the sampling algorithm works by iteratively selecting two random
points on the branch and extending the candidate line passing these two points as far as
possible. This process is repeated for a number of times to find the best candidate line.
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(@) (b)

Figure 1.17: Illustration of the Criterion A: (a) correct fusion of two junction points P;
and P»; (b) wrong fusion of two junction points P; and Ps.

A similar process is applied to obtain the arc segments, but three random points are cho-
sen. Each skeleton segment is then classified into either short or long primitives by simply
comparing its length with the local line-thickness. Each long primitive p is then associated
with an uncertainty domain A(p) defined as the region extended by two curves at a distant
of € on both sides from the that primitive (Figure 1.18).

(@) (b) (©)

Figure 1.18: (a, b) The uncertainty domains (gray zones) defined for a line and a cir-
cle primitive; (c) illustration of the junction optimization process; (reproduced from
[Hilaire and Tombre, 2001]).

Next, the long primitives are clustered into different groups by calculating the intersec-
tion zones from the uncertainty domains. Finally, each junction point J is reconstructed
from the primitives in each group by minimizing the weighted distance error. Particularly,
the optimized junction J is computed using the following formula:

n
J= i s x d(piy J 1.18
arg ?&i;wz «d*(p;, J) (1.18)
where n is the number of primitives in the considering group, d(p;,J) is the Euclidean

distance from a point J to the primitive p;, the weight w; is set to the length of p;, and I is
the intersection area of the uncertainty domains A(p;) with i € {1,...,n} (as illustrated in
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Figure 1.18 (c)). This work, as discussed by the authors themselves, has several weaknesses,
including being time-consuming, being sensitive to interrupted patterns, and featuring the
ambiguous step of merging junction points. In addition, the use of the uncertainty domains
is too restricted and threshold-dependent as the junction points need not to lie inside the
uncertainty domains.

This work has been further improved in [Hilaire and Tombre, 2006] where the main
improvement lies in the step of junction and skeleton optimization. The improved work
employs the same technique for skeleton segmentation as before. Next, a new criterion,
which is quite similar in spirit to the Criterion A, is defined for merging two long primitives.
This criteria is illustrated in Figure 1.19. To be more specific, a long segment P, which has
two endpoints Lp and Rp, is said to join another long segment ) having two endpoints Lq
and Rg by Lp if and if there are two discrete primitives X and Y such that the following
conditions meet:

e X and Y are fully included in the black region of original image,
e PCX,QCY,and XNY # 0, and

e JK € X NY such that [RpK| N [RpLp] = [RpLp|, where [RpK] € X is a discrete
primitive having two endpoints Rp and K, and the same for [RpLp].

Figure 1.19 illustrates two examples of possible joining primitives where P joins () by
Lp (Figure 1.19(a)), and P joins @ by L, and @ joins P by Lg (Figure 1.19 (b)).

Image
Rq
\ : X - _r_,_-f“K

X — K mg:mj*u -

| ]
P [] r Rp Lp :LQ

DIEED:H:U o H
= N
Lo Y . Rq

@) (b)

Figure 1.19: Illustration of primitive grouping: (a) P joins Q by Lp; (b) P joins Q by Ly
@ joins P by Lg; (reproduced from [Hilaire and Tombre, 2006]).

Next, the criterion is applied to achieve the global optimization of the skeleton and
junction location. To accomplish this, a connectivity graph is constructed where the nodes
are the primitives and an edge connects two adjacent primitives. The junction optimiza-
tion algorithm traverses all possible paths in this connectivity graph, starting from a long
segment and leading to either another long segment or the last segment of a sequence of
the short ones. For each path traversed, the criterion above is applied to check whether
the first segment could join the final one of the considering path.

Figure 1.20 demonstrates an illustrative example of the junction optimization process.
Figure 1.20 (a) is an original image and Figure 1.20 (b) is the results of the skeleton
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® Long primitive ~ ----To remove
o Short primitive =~ —— To keep

@) (h)

Figure 1.20: Illustration of the process of skeleton and junction optimization: (a) an
input image with its skeleton; (b) the results of skeleton segmentation process; (c¢) the
connectivity graph; (d-f) the process of graph simplification; (g) the final graph; (f) the
final skeleton and junction points; (reproduced from [Hilaire and Tombre, 2006]).

segmentation step: the capital letters (i.e., A, B, C, D) indicates the long primitives, while
the rest represent the short ones. The resulting connectivity graph is shown in Figure 1.20
(c) where the black nodes correspond to the long primitives and the white nodes are the
short ones. In Figure 1.20 (d), we obtain the first path composing of the nodes {A,b, B},
and the second path is found later in Figure 1.20 (e) composing of the nodes {B, ¢, d,C}.
For the first path, because the node A can join B using the aforementioned joining rule,
the node b is then marked for deletion and the two nodes A, B are directly connected. This
process is repeated for the other paths as shown in Figure 1.20 (e, f). The final graph is
plot in Figure 1.20 (g), which corresponds to the final skeleton and junction structure as
illustrated in Figure 1.20 (h). When the optimized algorithm terminates, the nodes marked
for deletion with unlinked edges are deleted.

The problem with this approach concerns the ambiguous step of constructing the con-
nectivity graph. For instance, it was not discussed in the paper why the edges (b, ¢), (¢, k),
(i,¢), and (j, k) are not included in the graph in Figure 1.20 (c). Besides, as mentioned
by the authors, multiple merging situations of the primitives might happen, the process of
reconstruction of the junctions is thus non-deterministic. Hence, more than a single solu-
tion can be obtained depending on the order of primitive merging. Figure 1.21 illustrates
such a case where another possible solution is presented for the crossing structure in Figure
1.20.
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Two T-junctions

(a) (b)

Figure 1.21: Another possible interpretation of the crossing structure in
[Hilaire and Tombre, 2006]: (a) an input crossing structure; (b) an interpretation
for the crossing in (a) where two T-junctions are constructed.

In summary, one of the most challenges of the skeleton-based methods is to handle the
problem of skeleton distortion taken place at the crossing zones. Most of these methods
addressed this problem by introducing a junction optimization step that uses some simple
and heuristic rules to merge the junction candidates. Such a rule, therefore, is highly
relying on the selection of several thresholds to make the decision of merging the junctions.
As the chosen of these thresholds is not trivial and mainly found based on empirical trials,
these methods can not perform well for different datasets. In practices, due to different
levels of degradation of input images, the obtained results could be substantially affected.

1.3.3 Contour-based methods

To avoid the distortion problem resulting from the skeletonization step, some works
detect junctions from contour-based vectorization results. Instead of using a traditional
skeletonization technique, these works are concerned with the extraction of median lines
from contours to avoid the problem of skeleton/junction distortion. These methods are
typically composed of four main stages. The first stage detects contours and partitions
them to obtain a set of contour segments. The second stage performs contour segment
pairing to find the matching contour segments located in two opposite sides of a stroke.
In the third stage, the median lines are generated from the matching contour segments.
Median line correction may be applied to refine the extracted lines. The last stage is
junction localization using the direction and continuity of the median lines and contour
boundaries. Table 1.8 presents the representative methods of this approach. The two
first criteria of multi-detection and junction characterization have the same meaning as
previously used in Table 1.2 (page 34). The last three criteria explain for the rules used in
the stages of contour paring, median line extraction/correction, and junction localization
respectively.

In [Hori and Tanigawa, 1993], the contours and skeletons of input image are polygonally
approximated to obtain two sets of skeleton and contour fragments. Next, each skeleton
fragment is associated to the closest contour fragments based on some heuristic criteria.
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A line fitting process is then performed as an iterative process composing of two steps.
The first step chooses a seed for line fitting as the longest unused skeleton fragment or
contour segment. The selected seed is then treated as a path on a graph where the nodes
are the skeleton fragments and an edge connects two adjacent skeleton fragments. Such a
path will be used to find a candidate line, fitting well to the skeleton segments of the path.
The second step extends the path by iteratively inserting, in one direction, a new adjacent
node of the current termination node of this path. A new node is inserted to the ongoing
path if two following conditions are met (Figure 1.22):

e The average distance between the endpoints of every skeleton fragment of the ongoing
path and the candidate fitting line is less than a threshold;

e The fitting candidate line lies inside an enclosed region bounded by the contour
fragments.

This searching step terminates when all candidate lines are visited and the longest one is
considered as the best line.

Direction
New adjacent node

i
! !

Termination node Candidate line Termination node

Figure 1.22: Illustration of the process of progressive extension of line fitting; (reproduced
from [Hori and Tanigawa, 1993]).

A final step of correcting the junction location is performed as follows with respect to
Figure 1.23:

e Find every two lines which share the same skeleton segment. For instance, in Figure
1.23, the first line is composed of two skeleton segments {S1, S2}, and the second one
contains two skeleton segments {S3,S2}. These two lines share the same skeleton
segment So.

e If the two lines share the same skeleton segment in two different directions, as pre-
sented in Figure 1.23 (a, b), the intersection of the new lines without the shared
skeleton segment is treated as a new junction point. Figure 1.23 (d, e) demonstrate
the junction correction results for the cases in Figure 1.23 (a, b).

e If the two lines share the same skeleton segment in the same direction, as presented
in Figure 1.23 (c), these two lines are refitted by merging their termination points to
produce the result (Figure 1.23 (f)).

This method can handle simple crossing zones corresponding to the T-, L-, and X-
junction. For more complicated junction configurations, special post-processing is needed.
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Figure 1.23: Illustration of the process of correcting the junction location; (reproduced
from [Hori and Tanigawa, 1993]).

In [Han and Fan, 1994|, the contours are first vectorized to obtain a set of contour
segments such as straight line segments, circular arcs, and curve segments. The contour
segments of the same type are then matched based on the following criteria:

e The distance between two segments is small enough;

e The overlap of the projection of the two segments on either horizontal axis or vertical
axis is sufficiently high;

e The direction difference of two straight line segments is close to 0° or 180°, or the
difference of the radii of two circular arcs must be small enough.

All these criteria are applied using some fixed thresholds. Next, the median lines
generated from the matching contour vectors, are vectorized resulting in a set of skeleton
vectors. Since there is often no properly matched contour segments at the crossing zones,
no median lines are generated at such location. To remedy this matter, a last process is
performed to connect the gaps and generate junction points as illustrated in Figure 1.24.
At first, a gap is detected as the place where there is at least two adjacent pairs of matching
contour vectors. Next, gap filling and junction generation is applied. Given n adjacent
contour vector pairs represented by {V;,,Vi,} (i = 1,...,n), a junction is constructed
employing the following procedure:

1. If there is no common contour vector among the n adjacent contour vector pairs, as
illustrated Figure 1.24 (a), the followings are the main steps of gap filling:
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Pick randomly a skeleton vector as a reference vector.

Compute the intersections of the reference vector with the rest.

e A new junction point is computed as the center of the intersections.

The skeleton lines are extrapolated to the junction point.

2. If there exist two pairs of contour vectors which share the same contour vector (e.g.,
V1 in Figure 1.24 (b)), the process of gap filling is performed as follows:

e Join the two skeleton vectors corresponding to the pair of continue collinear
contour vectors.

e Compute the intersections of the joint skeleton vector with the rest.
e A new junction point is computed as the center of the intersections.

e The skeleton lines are extrapolated to the junction point.

VsV

Neighborhood

ViVi: contour
vector pairs

(@) (b)

Figure 1.24: Illustration of the process of gap filling and junction generation after contour
segment pairing: (a) without common vector and (b) with common vector; (reproduced
from [Han and Fan, 1994]).

This work assumes that each crossing zone contains exact one meeting point or junction
point. In addition, the meeting point computed in this way might be located outside the
crossing zone. Furthermore, the junction location obtained for the case in Figure 1.24 (a)
may differ from time to time because the reference skeleton vector is selected randomly
without checking at the global point of view.

[Fan et al., 1998] presented a method to deal with the distortion of thinning-based
skeletonization using block decomposition and contour vector matching. The proposed
method first decomposes a binary input image into blocks and then the contours of each
block are extracted and polygonally approximated to obtain a set of contour vectors. A
matching process is then performed for pairing the matched contour vectors based on
several heuristic criteria. Particularly, a contour vector L; is matched with another contour
vector L; if the following conditions are met:
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e The direction difference between L; and L; is within a range of [90, 270], and

e L, is the line having the shortest distance, dist(L;, L;), to L;, and having the smallest
matching cost defined as dist(L;, L;)/|L;|, where |L;| is the length of vector L;.

Next, the median lines are generated from the matching contour vectors. The median
lines are vectorized to obtain a set of skeleton vectors. A final process of gap filling is
applied to connect the disjointed skeleton vectors due to the discontinuity of the blocks as
illustrated in Figure 1.25. Two different types of gaps are defined in this approach and two
different methods are employed for filling the gaps. These methods are illustrated in the
following.

e Type 1 gap: A gap of type 1 is formed by the matching of one contour vector Cy and
two disconnected contours Cy and C3 as shown in Figure 1.25 (a). For such a case,
gap filling is treated by linking two contour vectors corresponding to the matched
contours C1, Cq, and Cj3 as illustrated in Figure 1.25 (b).

e Type 2 gap: A gap of type 2 is formed by the matching of two skeleton vectors
belonging to different adjacent blocks By and B as shown in Figure 1.25 (¢). In this
case, gap filling is completed by linking these two skeleton vectors as shown in Figure

1.25 (d).
B,
c i . L o
Co— | E==Dr=—
T ~— ! TS !
i |c, GapTypel : | Gap Type 2 i
@) (b) (©) (d)

Figure 1.25: Illustration of the process of filling gap and junction generation; (reproduced
from [Fan et al., 1998]).

Figure 1.26 shows an example of the obtained skeletal vectors and junction points. It
can be seen from this example that the proposed method produces a noticeable displace-
ment of the skeleton and junctions (marked by the circles). In addition, the proposed
method works by incorporating various heuristic rules which would be failed to handle
complicated crossing zones.

The work in [Ramel et al., 2000] formulates the junction detection problem as an iden-
tification of relations (i.e., intersection, succession, parallelism) between contour primitives.
The contours of input image are first extracted and polygonally approximated to obtains a
set of vectors. A quadrilateral is defined as a pair of two matched vectors on two opposite
sides of a line segment. To construct the quadrilaterals, the matching algorithm picks up
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Figure 1.26: The obtained skeletal vectors and junctions in the work of [Fan et al., 1998].
The displacement of skeletal vectors and junctions are marked by the circles; (reproduced
from [Fan et al., 1998]).

the largest vector Vi from the list of non-matched vectors, and then looks for the two
closest opposite vectors, V5 and V3, based on the distances (e.g., d; and ds on Figure 1.27)
between the terminations of these vectors. A heuristic criterion, using parallelism and
foreground density, is then derived to match V; versus Vo and V3. To illustrate how this
criterion is applied, Figure 1.27 gives the match of Vi and V5. In this case, the vector V}
could be decomposed into two sub-vectors by projecting one of two terminations of V5 into
Vi (e.g., Pj). The less matched sub-vector (e.g., connecting P; and Py) is then updated as
non-matched vector. This procedure is continued until all vectors are processed.

Figure 1.27: Illustration of the contour matching process (see explanation in the text);
(reprinted from [Ramel et al., 2000]).

Finally, a structural graph is constructed to represent the structural relationships be-
tween the quadrilaterals such as parallel relation (P), T-, X-, and L-junction. Figure 1.28
illustrates such a graph constructed for part of an input image. The main weakness of this
work is the loss of connectivity among the adjacent quadrilaterals. It is also sensitive to
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parasite and degenerate quadrilaterals. In addition, the structural relation defined between
the quadrilaterals is restricted to few simple junction types.

Ly
ik

—

Figure 1.28: Construction of the structural graph (reprinted from [Ramel et al., 2000]).

In short, the contour-based methods avoid the major problem of skeleton distortion,
but they give a rise of several other drawbacks. In the first place, image contours must
be first extracted and polygonally approximated to obtain a set of contour vectors. The
resulting contour vectors are thus highly subjected to contour noise and distortion. On the
other hand, while contour vector matching is an obligated stage of these methods, it is well-
known that there has been no robust enough technique to accomplish this task. Although
existing techniques often employ various heuristic rules to perform contour matching and
junction construction, the obtained results are still far from perfection, especially when
encountering a crossing zone. Finally, the loss of connectivity of the median lines at the
crossing zones is an inherent drawback of these methods.

1.3.4 Tracking-based methods

Apart from the before-mentioned approaches for junction detection, tracking-based
methods have been proposed. These methods, known as direct vectorization, are involved
in vectorizing line-drawings without using any segmentation steps(i.e., neither skeleton
segmentation nor contour segmentation). Therefore, any error-prone introduced by a seg-
mentation process is avoided. Typically, these methods are composed of three main steps:
seed initializing, line tracking, and junction handling. Seed initializing is a step to detect a
starting element for the subsequent step of line tracking. These elements could correspond
to pixels (e.g., Sparse Pixel Vectorization |Dori and Liu, 1999]), oriented bounding boxes
[Song et al., 2002], circular regions (e.g., Maximal Inscribing Circle [Chiang et al., 1998]).
The second step of line tracking is an iterative process to fit the seed element to the fore-
ground region until some specific terminations are satisfied. Typically, the tracking process
terminates where it reaches a junction zone or an entire object is tracked. Then, the last
step of junction handling is triggered to determine the next tracking branch or to remove
the tracked objects.

A summary of the key works belonging to this approach is presented on Table 1.9
where the two first criteria of multi-detection and junction characterization have the same
meaning as previously defined in Table 1.2 (page 34). The last three criteria outline the
main ideas of the three steps of a tracking-based algorithm. The details of these methods
are presented in the following.
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In [Van Nieuwenhuizen and Bronsvoort, 1994], seeds are initialized manually. The user
points out the line and the direction to be tracked. Next, the indicated line is tracked using
two contour followers, called the left and right ones, on two opposite sides of the line. This
tracking process terminates until one of the following conditions is met:

e The last point found by the left contour follower equals to the previous point found
by the right contour follower and vice versa (i.e., the end of the line is reached).

e The current tracking position returns to the starting position (i.e., the line is closed).

e The distance between two successive median points is smaller than a threshold (i.e.,
a crossing zone).

While arriving at a junction location, the tracking algorithm detects the relevant
branches by constructing a series of n circles centralized at the current interrupted me-
dian point with increasing radii as illustrated in Figure 1.29 (a). The radii are determined
such that the corresponding circles pass through the previous tracked median points. The
intersections between these circles and the contours of the junction area are called circle-
contour points as shown in Figure 1.29 (b).

Next, starting from a circle-contour point of the current branch By and the i** circle
with i =2,...,n —1 (e.g., P; in Figure 1.29 (b)), a clockwise contour follower is applied
to detect the other circle-contour points. This contour follower terminates when the last
circle-contour point P is reached. The detected circle-contour points are then paired to
find the pairs of opposite circle-contour points used to identify the relevant branches of
the current junction area (e.g., the branches Bg, Bs, and By in Figure 1.29 (b)). Besides,
for each pair of two opposite circle-contour points, a new median point is generated. The
detected branches are finally provided to the user for the selection of next tracking branch.

B, B, o Circle-contour points
The last tracked « Median points

,»median point

Bs

_ _Previous tracked
median points

Ae,

(a) (b)

Figure 1.29: The branch construction process: (a) circle following; (b) branch construction;
(reproduced from [Van Nieuwenhuizen and Bronsvoort, 1994]).

This method is robust to handle the varying line width and irregular border as well.
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The main weakness is that it requires the intervention of the user in both seed initializing
and junction handling. Besides, the process of branch construction is sensitive to the fixed
setting of the parameter n in the tracking algorithm at the junction location.

[Dori and Liu, 1999| proposed a pixel-tracking-based vectorization system called Sparse
Pixel Vectorization (SPV). In the first step, a reliable starting median point is detected
as the midpoint of either the vertical run or horizontal run originated from the first en-
countered black pixel. Next, tracking process is proceeded in either horizontal or vertical
direction depending on the corresponding run length. During the tracking, the widths of
the tracked lines are estimated and compared to a threshold. If the width run conflicts
the width preservation, as shown in Figure 1.30 (a), a junction recovery process is trig-
gered. The junction recovery process works as an iterative search along the junction area,
composed of three steps:

e Revert back to the last medial point (Figure 1.30 (b));

e Update the tracking step length with half of the length in the previous step (Figure
1.30 (b, ¢));

e Explore a new tracking position.

A new invalid New valid

Width run tracking point tracking points
s/2 Wie s/4 2Tk

- ~
- 1 - ~
-7 hd
~

\ e ] -

~

allf

@) (b) (©) (d)

Figure 1.30: Illustration of the junction recovery process: (a) conflict of the width run and
the width preservation; (b) a new invalid tracking point; (c¢) a new valid tracking point on
the current branch; (d) a new valid tracking point on a different branch; (reproduced from
[Dori and Liu, 1999]).

The junction recovery process leads to two possible cases:

e A new valid tracking point is found, as shown in Figure 1.30 (d), and the tracking
process is proceeded on the new line.

e No valid points are found (i.e., the tracking step length becomes zero). In this case,
the tracking step continues with a new seed point.

Once the tracking step terminates, the median lines are polygonally approximated fol-
lowing some post-processing steps to link the collinear line segments of the same line
width, correct the defects at the junction location, and refine the endpoints. As argued
by [Song et al., 2002, the weakness of this junction recovery process is that it fails to pass
the junction areas where the length of the intersection zones is greater than the tracking
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step length. In addition, the loss of connectivity, when encountering the arcs, is another
weakness of the proposed method.

The authors in [Chiang et al., 1998| proposed a region-based vectorization system called
mazimal inscribing circle (MIC). A MIC is defined as a maximal-radius circle fitting inside
a line segment in the sense that it has at least two contact points with the border of this line
segment (Figure 1.31). The line segments are then tracked using the MIC(s) following a
labeling algorithm to analyze different detected lines, identify junction zones, and construct
spatial relations among them. After connecting the different lines through common junction
zones, the connected lines are vectorized to obtain vector-based representation. Two short
line vectors can be merged using the Bezier curve, if necessary. The final junction points
are calculated as the intersections of the vectorized lines. Experimental results showed
interesting performance of the proposed method, compared to the traditional approaches.
In contrast to many existing methods, the proposed system requires no post-processing
steps to prune the short segments and unify the spurious junctions. However, the system
is highly dependent on the step of line unifying at the common junction areas. In addition,
false merging of the two short segments can be happened due to the selection of fixed

thresholds.
Py

- -+ Tracking direction

Figure 1.31: Tllustration of MIC tracking process; (reproduced from [Chiang et al., 1998]).

In [Song et al., 2002|, a different approach based on object-oriented vectorization is
proposed. In this approach, the primitives are tracked in a specific order starting from the
simple ones (e.g., bar lines) to the complex ones (e.g., arcs, circles, text). This is referred
to the progressive simplification process whose main idea is to progressively recognize the
objects and then to remove them for reducing their disturbance. The seed initialization
step, as illustrated in Figure 1.32 (a), starts from a foreground pixel A and detects the
regular runs in both horizontal and vertical directions. This terminates where the number
of successive regular runs satisfies a pre-defined threshold, resulting in a successful seed
segment detection. The detected seed is then used to track the entire bar in both opposite
directions. Tracking process is continued until the length (L) of the last perpendicular
run violates the thickness (W) of the seed segment. To be more specific, the termination
conditions are as follows: L < 0.5x W or L > 2xW. Once the bar is completely tracked, it
will be removed to eliminate the interference with the rest of foreground objects. However,
the deletion operator at a junction area is not trivial. At such a junction zone, as illustrated
in Figure 1.32 (b), the authors suggested detecting the contours of the branches involved
in this zone and then analyzing their trends to calculate the part of the junction zone to
be preserved. Followings are the main steps of deleting a recognized bar at a junction area:
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e If there are at least two branches on both sides of the tracked bar, use the trends of
the incident contours to determine the area to be preserved (e.g., the center area in
Figure 1.32 (b)).

e If all the incident branches are on one side of the tracked bar, simply remove half of
the tracked bar which corresponds to the side containing no branches (e.g., the top
area in Figure 1.32 (b)).

The main challenge with this process is its sensitivity to contour noise. In addition,
when two intersection zones are too close to each other, the estimation of contour trends
is not reliable. The experimental results, applied to several vectorization test datasets,
showed the robustness of their system in the context of vectorization.

Branch at one side

Irregular run Regular runs i ian i
g \\‘/Medlanllne
\ -7
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Tracked bar
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Figure 1.32: Bar tracking process (a) and intersection preservation deletion (b); (repro-
duced from [Song et al., 2002]).

In summary, one common major problem of the tracking-based methods is the tracking
initialization. Depending on the detected seed segment, the subsequent step of line tracking
can be impacted since the stop tracking conditions are mainly relied on the seed’s informa-
tion such as its location, direction, and size. Another problem related to the tracking-based
methods is the reading order. A tracking method is a recursive process, wherein next track-
ing steps are initiated from the previous ones. Therefore, a small changes in the location
and direction of the previously tracked segment could lead to different results of the newly
detected segments. Consequently, the tracked median lines and the obtained junctions
could be displaced from time to time. Finally, the junction detection and correction pro-
cess is triggered by the tracking process. Any mistakes in the tracking progress could lead
to the miss detection of the junction point.

1.3.5 Conclusions of junction detection methods in line-drawings

In conclusion of the methods for junction detection in line-drawing images, we can draw
here several noticeable remarks. At first, since the junctions are detected as the intersec-
tions of the median lines, different methods have been proposed to deal with the problem
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of median line extraction and correction. Omne line of research has been relied on the
skeletonization approach. These methods directly extract median lines using some skele-
tonization techniques and then corrects the problem of junction distortion by incorporating
high-level processing steps. To accomplish this, most of these junction correction steps are
heuristics-based rules, which require specific parameter tuning to merge the false detec-
tions. Besides, scale invariant is partially achieved and junction characterization is rarely
discussed. Other methods, which try to avoid the problems resulting from skeletonization
step, are based on contour matching and element tracking. However, the contour-based
methods have two major problems: contour matching and gap handling. It may be noted
that there is no robust technique to handle the one-to-many and many-to-many matches in
the process of contour segment pairing. In addition, the loss of connectivity is an inherent
drawback of these methods. For the last approach of element tracking, seed initialization
and tracking order are two main issues. The junction detection and correction process is
highly dependent on the line tracking and detection. The last noticeable point is that no
real evaluations of these all methods in terms of junction detection are performed. In fact,
all these approaches have evaluated under the context of vectorization contests of which
the test images were not severely degraded and the evaluation metrics are not dedicated
to keypoint performance evaluation. The common metrics for evaluating a vectorization
system are Combined Detection Index (CDI) [Wenyin and Dori, 1997| and Editing Cost
Index (ECI) [Phillips and Chhabra, 1999]. The CDI metric computes the positive and neg-
ative detection rates at both pixel and vector levels, whereas the ECI metric is computed
at vector level measuring the cost of correcting a mistake (e.g., miss detection, false alarm,
one-to-many, and many-to-one) of a detection system. Since both the CDI and ECI metrics
are calculated at the vectorization results and the detected junctions take very small part
of the detection results, the real performance of the detected junctions is thus negligible
and not correctly evaluated. More precisely, evaluation of the junction detection process
has been embedded in a vectorization evaluation protocol.

1.4 Open discussion

Following the conclusions made at the end of each previous section, it is clear that the
techniques in CV for junction detection can not be directly employed to the same problem
in line-drawing images. As the line-drawing images are mainly composed of binary features,
the matter of extracting the edge map is thus a trivial task. However, junctions in line-
drawings are considered as the meeting points of the median lines, the CV techniques based
on edge grouping are likely to produce much of false detection rate. On the other hand, the
parametric-based techniques need to construct the junction models which are also relying
on the behavior of the edge ridges. These techniques therefore can not deal with the correct
detection of junction points in line-drawing images. To be more specific, the detected
points using these CV methods would be the corner points rather than the junctions
points when applying to line-drawing images. At last, due to the lack of standard datasets
for junction detectors, performance evaluation of the CV methods was rarely concerned.
Although a semantic benchmark was provided by [Maire et al., 2008|, few methods for
junction detection were evaluated on this dataset.
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In line-drawing images, the problem of junction detection has been mainly embed-
ded in a vectorization system. The obtained results are therefore subjected to the error-
prone caused by the raster-to-vector conversion process. Such a vectorization system has
been known to be sensitive to setting parameters, and present difficulties where hetero-
geneous primitives (e.g., straight lines, arcs, curves, and circles) appear within a single
document. Knowledge about the document content (objects, entities, document layout)
must be included and derived using an appropriate strategy to make the system more ro-
bust at the cost of adaptability. Besides, few of them (e.g., [Hilaire and Tombre, 2001] and
[Hilaire and Tombre, 2006]) are able to handle the multiple junction detection at a given
crossing zone, and junction characterization was not thoroughly discussed. Furthermore,
the real performance of these junction detection approaches have not been thoroughly eval-
uated due to the lack of extensive and comparative experiments. Indeed, most of these
methods were evaluated under the context of vectorization. Other methods just give few
illustrative examples of the detected junctions. Therefore, the real performance of these
methods for junction detection is still an open question.

Apart from the before-mentioned challenges, we are also aware of favourable features
of the existing methods. First, it is desired to use the median lines as a good presentation
of the line-like primitives but not the crossing zones. Therefore, if the crossing zones can
be segmented out, an off-the-shelf skeleton-based method would be useful to represent the
rest of line-drawings |di Baja, 1994]. Second, once the major part of line-drawings are rep-
resented by the median lines, the 2-junctions (e.g., L-, V-, M-junctions) can be detected by
partitioning the median curves into straight line segments. To do so, a polygonal approxi-
mation method can be applied. However, such a method shall produce many false alarms
for perfect smooth primitives taking a circle for example. A good alternative solution is
the use of a high curvature point detection. For this concern, we can reuse many robust
methods for dominant point detection in the literature [Teh and Chin, 1989]. Finally, once
the crossing zones have been segmented out, the incident median lines of a given crossing
zone are unlikely to be impacted by the problem of junction distortion or skeleton distor-
tion. The n-junctions (n > 2) contained in each crossing zone could be reconstructed using
an advanced junction optimization algorithm, and interesting approaches on this problem
have investigated in the literature by [Hilaire and Tombre, 2006, Maire et al., 2008|.

In this dissertation, we attempt to create such an approach for junction detection
in line-drawings that exploits the advantages of several existing techniques. The proposed
approach has the following major features: junction distortion avoidance, accurate junction
detection, multiple junction detection, efficiency and robustness. We will justify thoroughly
all these features in the next chapter.
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Chapter 2

Accurate junction detection and
characterization in line-drawings

Following the conclusions made in the previous chapter, it is highly agreed that junction
features are crucial for many applications. This chapter presents a novel approach for
junction detection and characterization in line-drawing images. The proposed approach
has been deeply evaluated through extensive experiments in comparison with two other
baseline methods. Experimental results showed that the proposed approach is robust to
common geometry transformations and can resist a satisfactory level of noise/degradation.
Furthermore, it works very efficiently in terms of time complexity and requires no prior
knowledge of the document content. At last, the proposed method is independent on any
vectorization systems.

2.1 Introduction

In line-drawing images, junction features are of crucial importance to support different
applications such as symbol localization and spotting, vectorization, storing and retrieval
of engineering documents. Despite a number of works for junction detection have been
proposed in the literature, each of these approaches has some specific limitations as thor-
oughly mentioned earlier. As we are interested in detecting and characterizing the junctions
for the analysis of engineering document images, this chapter attempts to bring a novel,
complete, and accurate approach for that purpose.

In the proposed approach, we directly formulate the problem of junction detection as
searching for optimal meeting points of line-like primitives from input images. However, as
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it is impossible to obtain ideal line primitives (i.e., 1-pixel-thick lines) from a digitization
process, the intersection areas of the line primitives can not converge or contract to one
pixel as expected. Therefore, to achieve exact junction localization, the line primitives
must be represented in suitable forms that facilitate the step of finding their intersections.
Apart from the major drawback of junction distortion, median axis lines have been known
to be very good representations of such line primitives. At first glance, it seems that our
approach would directly encounter the well-known problem of junction distortion. However,
it is important to note that if we can identify and remove all distorted zones, the remaining
line segments could be well represented as the mean of the median lines with little (or even
without) disturbance concerning the issue of junction distortion. We therefore develop our
approach based on this idea.

It is noted that similar idea has been explored in the literature [Hilaire and Tombre, 2001,
Hilaire and Tombre, 2006]. However, the approach taken in these works is quite different
from ours. Particularly, these two methods partition the skeleton into reliable and un-
reliable line segments relying solely on a single line-thickness criterion. If the length of
one segment is less than the line thickness, it is considered to be a short segment and
vice versa. The short segments are treated as unreliable segments and thus removed. Us-
ing such a threshold is too vulnerable and would lead to many mis-classifications among
unreliable/reliable segments.

Image )
29| Pre-processing |- > @

1

i% v
|0 Candidate Junction
= Detection | >
s
Eg v
3 Distorted Zone g’* -
- Detecton |77 g @ % h
v |
Extraction of Local | 2!
Topology )
v l'——‘::';"—-T
Junction s -
Optimization | > i y
o= —

Figure 2.1: Overview of the proposed approach.

In our approach, a distorted zone is identified by addressing two probing questions:
where such a zone is likely to appear and how large this distortion zone would be. Naturally,
the distorted zones occur at crossing locations and these zones would be restricted to small
areas fitting inside the crossing structures. The former fact indicates that we could make
use of candidate junctions to determine the locations of distorted zones, whereas the latter
observation suggests that a maximal inscribing circle [Chiang et al., 1998] would be useful
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to determine the areas of the distorted zones. We have investigated these two main lines
as the core strategy of our approach to detect the distorted zones.

Once the distorted zones are segmented out, the major part of line-drawings shall
be well represented by median lines. The 2-junctions are then detected as the meeting
points of two straight line segments. To do so, one can employ a polygonal approximation
method. However, such a method is sensitive to smooth objects. Taking the circles and arcs
for examples, a polygonal approximation method shall produce many small straight line
segments, resulting in many false detections of junction points. Interestingly, an alternative
approach is the use of a high curvature point detection method as it detects the points
in which the curvature is significantly changed in a local neighborhood. We have thus
employed the technique of [Teh and Chin, 1989] with a major change in the step of region of
support determination, making the method more robust to scaling change and digitalization
effect.

The n-junctions (n > 2) are reconstructed from the distorted zones. For this concern,
several techniques have been introduced using a specific junction optimization process
[Hilaire and Tombre, 2006, Maire et al., 2008]. Both these works share the common idea of
using distance error minimization as an objective function. The work in [Maire et al., 2008|
seems to be robust to distorted edge lines as its main idea relies on an iterative process of
junction-branch optimization (i.e., an EM-based algorithm). However, this work is limited
to single junction reconstruction and is not scale invariant. To detect the n-junctions, we
have extended this work to make it well-adapted to multiple junction detection and more
robust to noise.

The global system we propose is presented in Figure 2.1. It exploits five main stages,
each of which is briefly described hereafter:

e Pre-processing: Image enhancement and skeletonization.

e Candidate junction detection: This stage detects 2-junction candidates and n-junction
candidates (n > 2). The 2-junction candidates are detected as the high curvature
points of skeleton segments, and the n-junction candidates are detected as the cross-
ing points.

e Distorted zone detection: This stage detects and conceptually removes the distorted
zones using the information of the detected junction candidates and the line thickness.

e Extraction of local topology: The local topology around each distorted zone is ex-
tracted and then described using a specific structure to support the subsequent stage
of junction optimization.

e Junction optimization: This stages clusters the local skeleton segments of a given

topology structure into different groups, each of which shall construct a final junction
point.

In the following sections, we shall discuss in detail all these stages of our system.
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2.1.1 Pre-processing

Our method is applied to binary images. These images could be obtained following some
enhancement processes, such as noise filtering and binarization, depending on the specific
application. Next, the median lines are pre-extracted using the technique presented in
[di Baja, 1994] because it is probably argued as one of the most robust techniques for
skeleton extraction in the literature. In addition, this method is time-efficient, supporting
all our processes at a low time cost. At the end of this step, the median lines and crossing
points (i.e., the points with at least three 8-connected neighbors) are extracted to be used
in the subsequent stage (Figure 2.1).

2.1.2 Detection of candidate junctions

In the second stage, candidate junction points are detected from the median lines
extracted previously. These candidate junctions, in combination with the line thickness
information, are used to detect distorted zones and drive our junction optimization process
in the next stages of our system (see Figure 1). In our case, the candidate junctions are
classified into 2-junctions and n-junctions (i.e., the junctions formed by n arms with n > 3).
The n-junction candidates are easily extracted by detecting the crossing-points obtained
from the skeletonization step.

The 2-junction candidates are detected as the dominant points of the median lines.
Generally, the approaches for dominant point detection can be categorized into two classes:
multi-scale and single-scale. Although the former approaches |[Awrangjeb and Lu, 2008,
Mokhtarian and Suomela, 1998] have been known to be robust to noise, they often produce
high false positive rates. This matter is realized based on the fact that curve smoothing
and curvature estimation are two of the most critical stages of a dominant point detector
[Mohammad Awrangjeb and Fraser, 2012, Teh and Chin, 1989]. However, the choice of an
appropriate smoothing scale is not trivial and the use of a multi-scale framework to smooth
the curve does not solve the problem of scale selection. For the single-scale-based ap-
proaches [Carmona-Poyato et al., 2005, Reisfeld et al., 1995, Teh and Chin, 1989, the ma-
jor challenge is the determination of the region of support (ROS) or local scale. In our work,
the candidate 2-junctions are detected by exploiting Teh-Chin’s method |[Teh and Chin, 1989]
with a major change in the step of determination of ROS. The key idea in Teh-Chin’s work
relies on the observation that ROS could be determined by measuring the sudden change
of the chord length. Given a point p; of a digital curve, let [; is the length of the chord
connecting two points p;_x and p; 1 and hy is the Euclidean distance of p; to the chord .
The region of support is determined by starting with £ = 1 and gradually increasing this
value until one of two following conditions is satisfied:

e > Ukt (2.1)
hg hi1
|| > [ (2.2)
Ik lpt1

The condition (2.1) measures the sudden change of the length of two chords between
two consecutive iterations while the condition (2.2) limits how far around the curve that
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condition (2.1) should be applied. These two criteria could be useful for continuous curves
but are fragile in the case of digital curves. Figure 2.2 presents few examples that the
Teh-Chin’s technique fails to correctly determine the region of support. In the case of a
circle in Figure 2.2(a), the condition (2.2) turns out to measure the sudden change of the
angle (i.e. tan(fy) = % ) formed by the chord and the line segment p;p; i between
two consecutive iterations. Therefore, by applying the condition (2.2) and/or (2.1) we
conclude that every point on the circle has the same local scale of r which is also the
diameter of the circle. This local scale is clearly not an expected one. Naturally, as a circle
is a perfectly smooth curve, the local scale at each point on the circle should be selected
as one presented in Figure 2.2(d) such that the included angle estimated at that point is
close to 180 degrees. In addition, the condition (2.2) is used only when the hy # 0 and
thus resulting in some cases that we can not determine true scales as presented in Figure
2.2(b) where the point p; is the middle point on the line segment ¢1g2. In that case, the
desirable local scale of p; should be one as presented in Figure 2.2(e). Most frequently,
there exists many configurations of digital curves as presented in Figure 2.2(c) that the
Teh-Chin’s technique could not determine the correct scale due to digitization effect and
noise. Taking Figure 2.2(c) as an example, the region of support of 1 is selected for the
point p; (i.e. the point u in the zoomed in version) resulting in an included angle of 90
degrees at that point. This region of support is again not an expected one while the correct
local scale for this case should be selected as those in the Figure 2.2(f).
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Figure 2.2: Some examples in which Teh-Chin’s technique fails to correctly determine the
ROS. Top row: (a) ROS(p;) = d for any point p; on a circle with radius R, where I = 2R,
(b) ROS(p;) = 400 (i.e., p; is the middle point of segment q1q2 and thus Iy 4 > I for any
k,d > 0); (c) ROS(p;) =1 (i.e., lx41 = li). Bottom row: expected ROS for each case in
the top row.
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Our solution to the problem of ROS determination relies on the observation that for
every point p; of a curve, there exists a trailing line segment (i.e., the segment composing
of the points {p;, pi—1,...,Pi—k, }) and a leading line segment (i.e., the segment composing
of the points {p;, pi+1,...,Pitk }), where k; > 0 and k; > 0, such that both line segments
together constitute a meaningful view of that point regardless of how smooth the curve
is. This observation is especially true at dominant points on the curve, where a dominant
point is usually treated as the point at which two edges meet and form a vertex. This
fact suggests that the ROS of a point could be determined by finding the straight lines
fitted to the leading and trailing segments of that point. It turns out that this task could
be efficiently accomplished using linear least squares (LLS) line fitting technique. In the
proposed approach, given a curve consisting of N ordered points p1,po,...,pn, the ROS
at a point p; is determined as follows:

e Step 1: Start with k; = 1 and gradually increase k; in increments of one to estimate
the straight line dy of the form y = o+ Bz, which provides the best fit for the points
{pispit1,- ., Ditk, }- The parameters o and f are derived by minimizing the following
objective function:

i+kl
Qe 8) =Y (y; — = Bay)? (2.3)
j=i
Next, we define the distance error h(p;, ds) computed as the Euclidean distance from
a point p;(x;,y;) to the straight line dy as follows:

_ 1Bz —y;j +a

VP

The step of searching the local scale on the leading segment of p; will be terminated
at some point p;4y, if either of the two following conditions is satisfied:

h(pj, dy) (2.4)

itk

1
j=i
h(pi—l-kla df) > Emaz (26)

The condition (2.5) requires that the average distance error associated to the fitting
line is less than FEj,;, pixels. The condition (2.6) is designed to limit the maximum
distance error from a point p; to ds: no point is Ep,q, pixels away from dy (Epaz >
Epin). The value s; = k; — 1 is then treated as the local scale on the leading segment
of Di-

e Step 2: Repeat Step 1 to find the optimal scale s; = k; — 1 on the trailing segment
{pi)pi—h s )pi—kt}'

e Step 3: The ROS of p; is finally computed as: ROS(p;) = Min(sq, sp).
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Our empirical investigation showed that the values of Ey,;, and E,q. produce a negli-
gible impact on the detection rate provided that F,,;, € [1.2,2.0] and E,,q, € [1.5,3.0]. In
our implementation, we fixed the following setting for all the experiments: E,,;, = 1.3 and
FEper = 1.8. Once the ROS is determined, we then apply Teh-Chin’s algorithm to detect
the dominant points from skeleton branches. Figure 2.3 shows the dominant points and the
corresponding ROS(s) detected from an image. The detected points, in combination with
crossing-points, are treated as the candidate junctions and will be used to detect distorted
zones in the next stage.

(a) (b)

Figure 2.3: (a) An original image; (b) the detected dominant points (small dots) and the
corresponding local scales (small circles).

2.1.3 Distorted zone detection

The candidate junction points we have detected previously are used in conjunction with
the line thickness information to first detect distorted zones and then conceptually remove
these distorted zones to eliminate their interference in terms of the distortion of median
lines. In our approach, a distorted zone is identified by tackling two probing questions:
where is such a zone likely to occur and how large this distortion zone would be. Naturally,
the distorted zones occur at junction locations, and these zones would be restricted to
small areas fitting inside the crossing structures. Furthermore, line thickness is also one of
main causes of skeleton/junction distortion (i.e., thin objects are not or weakly subjected
to skeleton distortion). Relying on these observations, the distorted zones could be easily
identified by using the information of the line thickness at the candidate junction points
detected in the previous steps. More precisely, we define a distorted zone Z; for a given
candidate junction point J as the area constructed by a circle centered at J whose diameter
equal to the local line thickness computed at J. This definition is actually a variation of
the maximal inscribing circle, as presented in [Chiang et al., 1998]. By making use of line
thickness information, these maximal inscribing circles are easily determined with a high
degree of accuracy. We call several distorted zones that intersect together a connected
component distorted zone (CCDZ). Once the CCDZ(s) have been detected, the skeleton
segments lying inside these zones are treated as distorted segments and thus removed. From
this point, our subsequent stage of junction reconstruction proceeds based on the reliable
line segments only. Figure 2.4 (a) shows the reliable segments remaining after removing
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all distorted zones (marked as gray connected components).

(@) (b)

Figure 2.4: (a) An input image with the detected CCDZs (gray connected components)
and reliable line segments (thin white lines); (b) the local topology defined for a CCDZ.

2.1.4 Junction reconstruction

The junction reconstruction exploits candidate junction points to remove possible false
alarms, merge candidate junction points, and correct final junction locations. This recon-
struction is initiated in a first step by extracting local topologies, corresponding to sets
of segments belonging to the same distorted zone or set of intersecting distorted zones.
These local topologies will drive a second step in our junction optimization process. We
will present these two steps in the following subsections.

2.1.4.1 Extraction of local topology

This step defines and constructs the local topology at each CCDZ. In particularly, given
a CCDZ, its local topology is defined as the set of local lines segments, {P;Q;}i=1,..n,
stemming from this CCDZ. That is, for each reliable skeleton segment stemming from
a CCDZ, we characterize the first part of this segment by a local line segment starting
from the extremity linked to the CCDZ. By defining and analyzing these local geometry
topologies, we have significantly simplified the complexity of the objects of input images;
thus, the proposed approach is able to work on any type of shape rather than straight
lines and/or arc primitives exclusively. Moreover, this step can be performed efficiently
by reusing the results of the ROS determination stage applied at each extremity of each
reliable skeleton segment stemming from the CCDZ. As a result, for each CCDZ, we obtain
a list of local line segments describing its local geometry topology. In addition to these
local lines, the foreground pixels lying inside the CCDZ are also recorded for use as a
local search neighborhood for the subsequent step of junction optimization. In summary,
the local topology associated with a CCDZ is now represented by a list of n local lines,
{P;Qi}i=1,..n, and a set, Zy, containing the foreground pixels located inside the CCDZ.
Figure 2.4 (b) illustrates a local topology extracted for a CCDZ.
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2.1.4.2 Junction optimization

The goal of this step is to reconstruct the junction points for a specific CCDZ repre-
sented by n line segments {P;Q;}i=1,.., and a set, Zg, of foreground pixels lying inside
the CCDZ. We accomplish this goal by clustering the line segments into different groups
such that the clustered lines in each group will be used to form a junction point. Con-
cerning this problem of clustering segments, the authors in [Hilaire and Tombre, 2001, as
discussed above, calculated the intersection zones from the uncertainty domains of the long
primitives. This approach is subjected to the constraint that each primitive is allowed to
be clustered in one group only, increasing the difficulty of the subsequent junction linking
step. Another approach to segment clustering was presented in [Maire et al., 2008| based
on the idea that if we know the position of the junction, the associated line segments
passing through this junction could be easily identified and vice versa. However, this work
assumed that each neighborhood (see Figure 2.5) contains one junction only, and this ap-
proach is subjected to high computation load because the optimization step must include
sufficiently large neighborhoods likely containing junctions to reduce the error introduced
by the previous step of contour detection. In addition, the reweighting step does not con-
sider the weights accumulated during the previous iterations. This omission may lead to
incorrect convergence, as shown in Figure 2.5.
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Figure 2.5: Incorrect convergence of the junction optimization step in [Maire et al., 2008|:
(a) four line segments with the same length; (b) the detected junction, which is the same
distance from the lines 1 and 2; (c) the expected junctions.

We therefore develop an integrated solution for both clustering and optimizing tasks
to address the aforementioned weaknesses, described below. In particularly, the proposed
algorithm is able to handle the following issues simultaneously: (1) each neighborhood
can contain multiple junctions, (2) each line segment can be clustered into more than one
group, and (3) junction linking and characterization are automatically derived.

The key spirit behind our algorithm is as follows. Starting from a CCDZ (e.g., Figure
2.7(c)), a new junction point is constructed by iteratively searching for a foreground pixel
of the CCDZ such that the distance error, computed as the sum of weighted Euclidean
distances from this pixel to the line segments of the CCDZ, is minimized (e.g., Figure
2.7(d)). To achieve this goal, each line segment has to be assigned with a proper weight in
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the sense that the lines, which are close to the junction, would have higher weights than
the ones away from the junction. This implies that the weights are set mainly relying on
the distances from the junction to the lines. In practice, a smooth function (e.g., Gaussian
function) should be used to update the weights. As the algorithm evolves, the junction
tends to converge towards the lines with higher weights and move away from the lines
with lower weights. Hence, the junction would converge to a fixed point after several
iterations (e.g., Figure 2.7(d)). Once a newly optimized junction is derived, the weights
are re-assigned in such a way that higher weights are given to the lines which have not been
involved in constructing the junctions previously. The optimization process is then repeated
to find a new junction (e.g., Figure 2.7(e, f)). This continues until every line segment has
been participated in constructing at least one junction. A final post-processing step is then
applied to make the topology of the obtained junctions be consistent (e.g., Figure 2.7(g)).
The proposed algorithm works as follows.

Let w; be a weight assigned to the line segment P;(Q); with 1 < i < n, and s be a set
of optimal junctions found during the optimization process. At the beginning, Q; < () and
all line segments {P;Q;} are marked as unvisited. Basically, the weights could be initiated
uniformly (e.g., w; = 1.0), but we can make faster the process of junction convergence by
incorporating some priority. One common way is to assign the weights with respect to the
strength of the line segments [Hilaire and Tombre, 2001, Maire et al., 2008|. Followings
are the main steps of the proposed algorithm with the outline in Figure 2.6.

CCDZ: n lines {P,Q;}, and weights {w;}

N Optimal
junction localization

Convergence test? v

No

Weight updating

New junction and
cluster creation

{

All lines processed? v

No

Topology verification

Optimal Junctions

Weight reinitiating

Figure 2.6: Outline of our junction optimization algorithm.

e Step 1: Search for an optimal junction J*:

J* = arg %%{; w; - d(J, PiQ;)} (2.7)
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where d(J, P;Q;) is the Euclidean distance from J to P;Q;.

Step 2: Update the weights {w;}:

- d(J*, PQ:)’
Sccpz

w; = w; - exp( (2.8)
where Scopyz is the area of the CCDZ.

Step 3: Enact a penalty (i.e., smaller weight) for the line segment farthest from J*:

"
Wimaz = ——— (2.9)

T
where imazr = argmax;{d(J*, P;Q;)} and 7 > 1. If there are several line segments
with the same greatest distance from J*, one is randomly selected to assign a penalty.

Step 4: Repeat steps {1,2,3} until J* converges to a fixed point or a given number
of iterations has been reached. Then, insert the newly obtained junction to €;:
Qy« Qy;U{J*}, and go to Step 5.

Step 5: Determine the line segments that pass through the junction J* and mark
them as wvisited. A new cluster is constructed corresponding to these line segments.
If all line segments have been marked as visited, go to Step 7. Otherwise, go to Step
6 to look for other junctions.

Step 6: Reinitiate the weights: w; = 1 if the label of P;Q; is visited; otherwise:

-d(J§, PiQi)?
w; = [Jexp( Ui, FiQu)” (2.10)
P Sccpz

where L is the number of times that steps {1,2,3,4,5} have been fulfilled, and J}} is
the optimal junction found during the corresponding cycle. Return to Step 1.

Step 7: Topology consistency verification by resetting the weights: w; = 1 if the line
P;Q; is involved in only one cluster; otherwise w; = weoo = K - vV H? + W2, where W
and H are the width and height of input image respectively, and K = |Q2;|. Then,
apply Step 1 to the line segments in each cluster to obtain the final junctions. In this
way, the lines assigned with the weight w are fixed in one place.

The idea of using distance error minimization in Step 1 has been employed in several

works. [Hilaire and Tombre, 2001] employed least squares error minimization to find the
optimal position of the junction, but this process is performed separately from segment
clustering. [Maire et al., 2008| developed this idea by incorporating a reweighting step
like that in Step 2 but differing in that it does not incorporate the weights accumulated
during the previous iterations and requires a training step to empirically derive a parameter
controlling the decay of distance tolerance.

Our investigation has shown that Step 1 will quickly converge to the optimal junction

if the weights are updated taking into account the weights derived during the previous
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Figure 2.7: (a) An image with its skeleton; (b) the CCDZ(s) and the reliable line segments;
(c) the local topology configuration extracted for one CCDZ (marked by Zz); (d) the first
cycle of steps {1,2,3,4,5}: the junction J; is found corresponding to the cluster containing
line segments {1,3,4}; (e) the second cycle: the junction Js is found corresponding to the
second cluster comprised of lines {1,2}; (f) the third cycle: the junction Js is found
corresponding to the third cluster of {1,5}; (g) topology correction for three junctions.

iterations. In addition, we avoid the training step by normalizing the distances, d(J, P;Q;),
based on the area of the CCDZ (i.e., the factor m-d(.J, P;Q;)?/Sccopz is equal to the ratio
of the area constructed by a circle with radius of d(J, P;Q;) centralized at J and the area
of CCDZ). Step 3 enacts a penalty (the parameter 7 = 2 in our implementation) for the
line segment farthest from the optimal point J*. If there are several line segments with the
same greatest distance from J*, one is randomly selected to assign a penalty. This step is
used to allow the optimization process to quickly converge to a correct junction location.
More importantly, it acts as a trigger to break the balance state or incorrect convergence,
if any, as discussed in Figure 2.5. Note that if one line segment is penalized, it does not
imply that this line segment will not pass through the latest optimal junction.

Step 4 is used to repeat the three steps above until the optimal junction is found. The
obtained junction is then added to the set Q2 (e.g., the junction J; in Figure 2.7(d)). Next,
the line segments that actually form this junction are determined by looking for the lines
whose distances from the detected junction tend to form a monotonically decreasing order
(e.g., the lines {1, 3,4} in Figure 2.7(d)). This is accomplished because at each iteration,
the optimal junction would converge towards the lines with higher weights and move away
from the lines with lower weights. Therefore, the distances from the optimal junction in
each iteration to the line segments are recorded and then used to determine the real lines
passing the most recently found junction. The obtained lines are then associated to a
new cluster, and marked as visited (i.e., already involved in at least one junction). If all
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lines have participated in constructing at least one junction, the algorithm terminates after
checking topology consistency in Step 7. Otherwise, Step 6 is invoked to initiate a new
cycle to find other junctions (i.e., a cycle is composed of the first five steps {1,2,3,4,5} to
completely find a new optimal junction).

In Step 6, the weights are reinitiated such that more priority or higher weights are given
to the lines that have not yet been involved in junction construction (e.g., the lines {2,5}
in Figure 2.7(d)). To this end, the recorded distances that violate the monotonic decrease
are used to accumulate the weights for the lines. In this way, these lines increasingly gain
weight, and at the end, when the weights are large enough, the optimization process (i.e.,
steps {1,2,3,4}) will be driven by these weights, leading to a new junction convergence at
the corresponding lines (e.g., Jo in Figure 2.7(e) and J3 in Figure 2.7(f)).

Step 7 is aimed at verifying the topology consistency of all line segments in the obtained
clusters. At this time, we obtain K clusters, each containing one optimal junction. As one
line segment, say P;Q;, can be clustered in several groups (e.g., the line 1 in Figure 2.7(f))
and there is no warranty that all the optimal junctions in these groups will form a straight
line that fully contains P;Q);, such situations must therefore be identified and corrected.
This step could be easily processed by setting a large enough weight for the line P;@; and
then performing Step 1 once for each cluster. In this way, a small change in the distance
error computed from each point J € Z; to the line P;Q); will cause a large change in the
objective function in Step 1. The line P;Q); is thus fixed in one place, and the new optimal
junctions found in the clusters, in which P;@Q); is involved, become consistent (Figure 2.7(g)).
Figure 2.7 demonstrates the steps of our junction optimization algorithm, and Figure 2.8
shows all the detected junctions and the corresponding local scales.

Figure 2.8: Detected junctions (red dots) and local scales (circles).

2.2 Junction characterization

One of the main advantages of our junction reconstruction process is that the detected
junctions could be automatically characterized and classified into different types, such as
T-, L-, and X-junctions. More generally, we wish to characterize any complicated junctions
in the same manner based on the arms forming the junction. In our case, as each junction
point is constructed from the local line segments of one group, we can consider these line
segments as the arms of the junction point. However, as each CCDZ can contain multiple
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junctions and each local line segment of the CCDZ can participate in several groups, the
exact arms of a junction could therefore be greater than the line segments forming this
junction (Figure 2.9). Given a local topology represented by n straight line segments
{P;Q;} with 1 < i < n, the process of determination of the exact arms of each junction is
as follows:

e Let Oy be a set of arms of junction J where O; < () at the beginning for every
junction.

o If the line segment P;Q; is clustered in a group whose an optimal junction J is
then constructed, the line P;Q; is considered as one of the arms of the junction J:
0y < 0; U{PQ;:}.

e For each line segment P;(); that is clustered in several groups, the corresponding
junctions involved in P;@); are sorted in the order of increasing distance to P;. Then,
for each junction J except the last one in the list, the corresponding set O is updated
as: Oy < O;U{JG}, where JG is a straight line segment constructed at J with the
same length as P;@; but the point G lies in the opposite direction of vector PZ_QZ

Figure 2.9: (a) A CCDZ cropped from Figure 2.7 with the superposition of three clusters;
(b) detected junctions {Ji, Ja, J3}; (c) the detected junctions are classified as a 3-junction
even though Jo and J3 are constructed from two clusters, {1,2} and {1,5}, respectively,
each of which only contains two local line segments.

Once we have correctly determined the arms of each junction, the junction characteriza-
tion could easily be accomplished as follows. Given a junction J associated with a set of m
arms {U;V;}i=o,...m—1, the characterization of this junction is described as {p, s;, {9?};1_01 ,
where:

e p is the location of J;

e s, is the local scale computed as the mean length of the arms of J:

1 m—1
sp=— 2; UVl

° 9? is the difference in degrees between two consecutive arms U;V; and U;11V;+1. These
parameters {67 }?;61 are tracked in the counterclockwise direction and the 67, is
the difference in degrees between the arms U,,—1V,,—1 and UyVj.
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It is noted that a similar way of junction characterization has been also exploited in
the CV field, taking the work of [Xia, 2011| for example. In their work, the junction arms
{6; ;161 are described using the absolute angles in a 2D plane. Here, we use the relative
difference in degrees between two successive arms to make the junction characterization
invariant to the image plane and make it easier for further processes of junction matching.

The description of each junction point derived in this way is rather compact, distinctive,
and general. The dimension of this descriptor is variable but limited to the number of arms
of each junction point, and in practice, this value is quite small (e.g., 3 for a T-junction,
4 for an X-junction). This point constitutes a great advantage of the detected junctions
that provides a very efficient approach to the subsequent task of junction matching. In
addition, the junction descriptor is distinctive and general, such that we can describe any
junction points appearing in a variety of complex and heterogeneous documents. After
this step, junction matching can be performed by simply comparing the descriptors of two
junctions. Figure 3.5 shows the corresponding matches of the junctions detected in a query
symbol (left) and those of an image cropped from a large document (right). For simplicity,
the matches are shown after performing geometry checking using the Generalized Hough
Transform [Ballard, 1981].

Figure 2.10: Corresponding junction matches between a query symbol (left) and a cropped
document (right).

2.3 Complexity evaluation

In this section, we provide a detailed analysis of the complexity of the proposed method
given an image I of the size M x N. In the pre-processing stage, before applying the (3,4)-
distance transform skeletonization algorithm, several basic pre-processing steps, such as
hole filling, small contour removing, and image dilation, are performed, as discussed in
the original work of Di Baja [di Baja, 1994|. Such steps can be processed in parallel using
one scan over the image. The skeletonization step is then applied, which requires two
scans of the image to calculate the (3,4)-chamfer distance. In summary, the computation
complexity for the pre-processing stage is basically linear (i.e., O(MN)).
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In the next stage of scale selection and dominant point detection, the ROS determina-
tion step is applied for each skeleton point, thus using a single loop of length S, where S is
the number of skeleton points. The technique of least squares line fitting is a second-order
linear computation of the length that it traverses. In practice, it is not necessary to traverse
a full skeleton branch; rather, a short path of the branch with a length k, = 50 (pixels)
may be sufficient, for example. As the technique of least squares line fitting is performed in
both directions at each point, it is equal to a complexity of O(2S5 k?,) in total for this step.
The 2-junctions are then detected as dominant points by applying Teh-Chin’s algorithm,
which is a sequential 4-pass process, where the first pass is performed on the full length of
the median lines to detect a list of H candidate dominant points and the other passes are
conducted on one of these candidate points, where H is much smaller than S. Furthermore,
the crossing-points could be detected in parallel with a cost of first-order linear polynomial
time O(S). The overall computation complexity for these processes is essentially linear to
the length of the median points (i.e., O(Skg)).

For the last stage of junction reconstruction, let K be the number of candidate junctions
comprised of 2-junction points and crossing-points. The distorted zone Z; defined at each
candidate junction p; (1 < i < K) has an area of 7r7"z-2 /4 where r; is the line thickness at p;.
Given a distorted zone Z;, the maximum complexity of the computation to find an optimal
junction in Z; is O(T'wr?/4) where the first factor, T, is the number of times that steps
{1,2,3} are repeated and the second factor, 7”"1'2 /4, is the number of foreground pixels in
Z; (i.e., the local searching neighborhood). Our investigation has shown that the number
of iterations, T, is very small and is typically less than 10. As Z; can contain multiple
junctions, say L junctions, it implies that the junction optimization process applied to Z;
will be terminated after running L iterations of the steps {1,2,3,4,5}. The value of L is
also very small in practice, often 2; thus, for a wide range of situations, we have set L =5
in our implementation. Overall, the maximum complexity of computation for this stage,
applied to K distorted zones, is O(K LTr?) where r is the average line thickness of the
image I. In other words, this stage is linear time complexity for the areas of the distorted
zones. Note that the distorted zones, in practice, could intersect, resulting in connected
component distorted zones and making the searching areas much smaller.

2.4 Experimental results

2.4.1 Evaluation metric and protocol

We use repeatability criterion to evaluate the performance of our junction detector
because this criterion is standard for the performance characterization of local keypoint
detectors in CV [Tuytelaars and Mikolajczyk, 2008]. This criterion works as follows. Given
a reference image I,y and a test image Ijs taken under different transformations (e.g.,
noise, rotation, scaling) from /.y, the repeatability criterion signifies that the local features
detected in I,.; should be repeated in ;s with some small error € in location. We denote
D(Iref,ftest,e) as the set of points in I,.; that are successfully detected in Iies in the
sense that for each point p € D(Iref, liest; €), there exists at least one corresponding point
q € Iiest such that distance(p,q) < e. Let n, and n; be the number of keypoints detected
by one detector from I,.; and Ijcq, respectively. The repeatability score of this detector
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applied to the pair (I cf, Itest) is computed as follows:

D(Iret, Liest, €
Ty

Reference Reference
| images Junctions
1
Junction | Groundtruth Repeatability
Detector 1 Information Score
1
L
Test images Detec.ted
Junctions

Figure 2.11: The evaluation strategy applied to each detector.

(2.11)

Our strategy to perform evaluation in the experiments is described in Figure 2.11.
This strategy follows the general characterization protocol for keypoint detection in CV.
Particularly, we first apply each detector to the reference images and the test images in each
dataset to obtain the reference junctions (.S,) and the detected junctions (S¢), respectively.
Then, we use groundtruth information to compute repeatability scores of this detector
from two sets of junctions: S, and S;. The overall repeatability score of each detector
in each experiment is computed as an average score from the repeatability scores of the
detector applied for all model symbols and test symbols in each dataset. We vary the value
of parameter € in the range of [1, 8] to obtain a ROC-like curve of the repeatability score.

2.4.2 Baseline methods

To compare the proposed system with other methods, we have selected two baseline
systems [Liu et al., 1999, Hilaire and Tombre, 2006] dedicated to junction and fork-point
detection. The work of [Liu et al., 1999] is dedicated to fork-point detection in handwritten
Chinese characters, whereas the work of [Hilaire and Tombre, 2006] is a vectorization-based
system for line-drawings. We wish to highlight that although the later work is designed for
vectorization, the major contribution in this work is the process of skeleton optimization
to correct skeletons and reconstruct junctions. As the implementations of these works are
not publicly available, we have developed our own implementation for these two systems!.
For each system, several running trials have been performed to select the best parameter
settings, and only junctions or fork-points are compared with our detected junctions. It is
worth noting that we have applied the same pre-processing steps for all three systems and
used the same parameter settings in all the experiments.

2.4.3 Datasets

The datasets used in the experiments are summarized in Table 2.1, including the final
datasets from Symbol Recognition Contest in GREC2011 (SymRecGREC11)2, the UMD

The source codes for the three systems and the demonstration of our junction detector and symbol
spotting are publicly available at https://sites.google.com/site/ourjunctiondemo/
Zhttp:/ /iapr-tc10.univ-Ir.fr/index.php /symbol-contest-2011

91



2.4. EXPERIMENTAL RESULTS

Table 2.1: Datasets used in our experiments

No. Dataset Type Noise TRe feiéfcr:ges T Tests
#1 GREC11 Line-drawing Rotation 150 1339
#2 GREC11 Line-drawing Scaling 150 1200
#3 GREC11 Line-drawing | Kanungo+Rotation+Scaling 150 15000
#4 GREC11 Line-drawing Context 18 1800
#5 SESYD Line-drawing Low Resolution 100 936
#6 | UMD Logos | Filled-shape | Kanungo-+Rotation+Scaling 104 1272

Logo Database of University of Maryland, Laboratory for Language and Media Processing
(LAMP)3, and low resolution diagram dataset from SESYD?. The SymRecGREC11 dataset
is composed of 4 folders, namely setA, setB, setC, and setD with respect to 2500, 5000,
7500, and 1800 test images, respectively. The first three folders are distorted by a mixture
of Kanungo noise and geometric transformations (i.e., scaling and rotation), whereas the
last dataset is disturbed by context noise (i.e., symbols cropped from full line-drawing
images). The UMD Logo Database consists of 104 model logos, which have been used
to generate 1272 test images by applying a combination of Kanungo noise and geometric
transformations. The low resolution diagram SESYD dataset contains 100 reference images
and 936 test images by applying 4 levels of low resolution, corresponding to the scaling
factors {1/2,1/4,1/8,1/16}. Consequently, the image resolution is varied from 1700 x 1700
to 100 x 100, and the line thickness is also varied in the range of [2, 18]. These test images
are then exported in PNG format in which some blurring effect will be automatically
incorporated to these images. In addition, for the evaluation of single parameter changes
(i.e., rotation and scaling), we have used 150 model symbols from GREC2011 to generate
1339 test images taken under different levels of rotation (e.g., from 10° to 90°) and 1200
test images taken under different scaling factors (i.e., {1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}).

2.4.4 Comparative results
2.4.4.1 Evaluation of rotation and scaling change

In this experiment, the repeatability scores are computed over single parameter changes
while the location error is fixed at 4 (pixels). Figure 2.12(a) presents the effect of rotation
change for three systems. It can be noticed that the proposed approach far outperforms
(almost 25%) the two other systems and that our repeatability scores tend to be quite
stable and almost over 88% when varying the rotation parameter. These results confirm
that the proposed system is very robust to rotation change. The systems of Liu et al. and
Hilaire et al. are theoretically rotation invariant; however, the results reported here show
that these systems are less adaptive to rotation change under real-world conditions.

In the context of scaling change, as shown in Figure 2.12(b), the same situation is
repeated for the baseline methods, whereas the proposed system still strongly outperforms

Shttp://lampsrv02.umiacs.umd.edu/projdb/project.php?id=47
“http://mathieu.delalandre.free.fr /projects/sesyd,/
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Figure 2.12: Repeatability scores of three systems on rotation change (a), and scaling
change (b), where location error is set at 4 pixels.

the

others. It is noticed, in particularly, that the results obtained by the system of Hilaire

et al. are significantly degraded when increasing the scaling factor. This degradation
could be due to the two baseline systems being quite sensitive to the digitization effect
caused by rotating and scaling the input images. In fact, the results reported in the
work of [Hilaire and Tombre, 2006] are applied to several line-drawing images that are
typically used in the context of vectorization contests, whereas the results reported by
[Liu et al., 1999] are applied to handwritten Chinese characters, which are not taken under
extreme rotation/scaling changes.

2.4

.4.2 Evaluation of a mixture of Kanungo noise and rotation/scaling change

We have selected the first three sets, setA, setB, and setC, from the final recognition

datasets in GREC2011 to evaluate the performance of three systems under different combi-
nation of binary noise and geometric transformations. Some examples of such degradation

are

shown on Figure 2.14 (a, b). The purpose of this experiment is to justify how well each

system can work under different levels of degradation. The results are presented on Figure
2.13 where the proposed system achieves much better results on all three setA, setB, and
setC, compared to the systems of Hilaire et al. and Liu et al. On average, the repeatability
scores obtained by the proposed system are 15% higher than those of the other systems,
especially for the first small range of location errors (e.g., see the first part of the score curve
of the proposed system). If we have a more detailed analysis at our results by fixing the
location error at 4 (pixels), it can be noticed that the repeatability scores of the proposed
system are almost 80% on all three setA, setB, and setC. These obtained results are quite
interesting considering a severe degree of degradation applied on these datasets. Under

the

same conditions, we can see that the scores of two baseline systems are approximately

60%, which is much less than that of the proposed system. These results suggest that the
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proposed system can resist to a satisfactory level of degradation composing of common
binary noise and geometric transformations.

Two main factors explain these results. First, the polygonization process in the system
of Liu et al. and the skeleton segmentation step in the system of Hilaire et al. are rather
sensitive to the distortion of contours. Second, the post-process of junction merging us-
ing Criterion A is quite sensitive to the variation and distortion of the line thickness of
foreground objects. The results of our system suggest that the proposed system can satis-
factorily resist degradation including common binary noise and geometric transformations.
A last noticeable point exhibiting on Figure 2.13 is that that there is a little difference of
performance obtained on the setA, setB, and setC for all three systems because there is,
in fact, no significant difference of degradation among the images of these three test sets.

Repeatability scores for setA of GREC2011

Repeatability scores for setB of GREC2011
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Figure 2.13: Repeatability scores of three systems for setA, setB, setC, and setD of
GREC2011.
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2.4.4.3 Evaluation of context noise

Although Kanungo noise and geometric transformations are very common degradation
models in DIA, a more realistic type of degradation is known as context noise. By def-
inition, context noise is concerned with a type of disturbance caused by background or
context information. For this purpose, we have selected setD from the final recognition
dataset in GREC2011. The test images in this set have been cropped from full line-drawing
documents where each reference image could be touched with other context information.
The repeatability scores of three systems are reported in Figure 2.13(d). Although the
proposed system still outperforms the others, the repeatability scores of all systems are
quite low. This finding is attributed to the fact that the images in setD are embedded
into other context information, resulting in many false positives being detected in this set,
as shown in Figure 2.14 (¢, d). However, without any prior knowledge about groundtruth
information, these false alarms correspond to the mismatches of correct detected junctions
missing in the reference images.

i s
<o ]

@)

(d)

Figure 2.14: Junctions detected (red dots) by the proposed system for setC' ((a) and (b)) and
setD ((c) and (d)) of GRECI11. False positives caused by context noise in setD are marked by
dashed-line boxes.

2.4.4.4 Evaluation of the low resolution dataset

In this experiment, we wish to assess the performance of the three systems for very
severely low resolution images. We have selected the low resolution diagram SESYD
dataset, in which the test images have been generated from the reference images by
applying four exponential levels of low resolution corresponding to the scaling factors
{1/2,1/4,1/8,1/16} and incorporating a compression scheme (JPG) from gray-scale im-
ages. The results of the three systems are shown in Figure 2.15(a), where the proposed
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system again performs better than the baseline systems. On average, the proposed system
provides 10% and 5% better results than those obtained from the systems of Hilaire et al.
and Liu et al., respectively. All three systems perform quite well on the first levels of low
resolution, but their performance rapidly degrades for the later levels of low resolution.
This behavior is mainly due to the loss of much of the original information, especially finer
features, when reducing the resolution.

Repeatability scores for low resolution dataset (SESYD) Repeatability scores for the UMD logo dataset
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Figure 2.15: Repeatability scores of three systems for SESYD low resolution dataset (a),
and the UMD logo dataset (b).

2.4.4.5 Evaluation of the filled-shape and non-uniform stroke dataset

In this experiment, we want to justify how different kind of images, such as filled-shape
and non-uniform stroke images, can impact the performance of the three systems. For this
purpose, we have selected the UMD logo dataset, which typically composes of filled-shape
and non-uniform stroke objects at a hard level. The repeatability scores are presented in
Figure 2.15(b). Even though the skeleton-based representation for such kind of images is
not perfect, the obtained results are encouraging. The system of Hilaire et al. achieves
the lowest scores because of a lower number of outputted junctions. As the line thickness
of the filled shapes is greatly varied compared to the typical line-drawings, many short
skeleton segments are produced. Consequently, few long skeleton segments are retained,
and thus the number of detected junctions is rather limited in the system of Hilaire et al.
Our system also produces a limited number of junctions, even less than that of the Hilaire’s
system, but it still noticeably outperforms the system of Hilaire et al. and almost gives the
same results as those of the system of Liu et al. These results confirm the accuracy of the
detected junctions of the proposed system. Some visual results of the proposed system,
applied to the logo images and Chinese characters, are shown in Figure 2.16.
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Figure 2.16: Junctions detected (red dots) by the proposed system for few Chinese char-
acters and logo images.

2.4.4.6 Evaluation of the built-in aspects

In addition to the evaluations discussed above, we have investigated several additional
trials to understand the behavior of the proposed approach at the system level. In partic-
ularly, we wish to present a detailed analysis of the impact of the stage of determination
of ROS and the computation time of our junction detector. Regarding the first aspect,
we have computed the repeatability scores for the setC' up to the stage of dominant point
detection over three different scenerios: the use of ROS based on local line thickness (i.e.,
the ROS at given a point p is set as the local line thickness at p), the use of ROS proposed
by [Teh and Chin, 1989], and the use of ROS proposed by our approach. The results are
presented in Table 2.2. It can be seen that our method achieves much better results than
the others (by almost 23%). The results linked to the ROS proposed by Teh-Chin are quite
low because, as we have discussed in Section 2.1.2, the Teh-Chin’s ROS determination step
is sensitive to digitization effects, whereas in this dataset, the noise applied to these images
is quite severe, distorting their shapes. The results shown in Table 2.2 also reveal that line
thickness could be a good feature to estimate local scales.

Table 2.2: Comparison of the dominant point detection rates for three scenarios.

’ Dominant point detection mode ‘ Repeatability Score ‘
With ROS of the proposed method 67.5 %
With ROS based on line thickness 44.3 %
With ROS proposed by Teh-Chin 21.3 %

We also performed an additional experiment to study the impact of the two parameters
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FEpin and E,q. in the stage of ROS determination. For this purpose, we vary the values of
Epin and Ep,.., and compute the repeatability score of the proposed system for the setC
up to the stage of dominant point detection. The obtained results are presented in Figure
2.17. These results show that the detection rate is quite stable (e.g., varying in the range
of [63,68]) given various settings of E,,;, and Ey,q,. This is expected as It is noted that
the proposed system achieves the repeatability score of 67.5% in Table 2.2 with respect to
the following setting: F.;, = 1.3 and Eq, = 1.8.

Impactof E . and E___in the proposed ROS determination
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Figure 2.17: Impact of the parameters E,,;, and Fy,q,: the repeatability score is computed
on the setC.

For time complexity evaluation, we provide in Table 2.3 some information about the
processing time (excluding the pre-process step) of three systems applied on several images
with different sizes. The processing time has been recorded on our specific computer
configuration: Intel(R) Core(TM) i5 CPU 2.4 GHz, RAM 2.4 GB, Windows 8.

Table 2.3: Report of the processing time (ms) and the number of detected junctions (in
brackets).

System Image size (Width x Height)
900 x 984 3600 x 3938 | 2100 x 4433
Our system | 16.0 (67) 187.0 (79) | 140.0 (105)
Hilaire et al. | 110.0 (89) | 297.0 (147) | 265.0 (146)
Liu et al. | 563.0 (82) | 14953.0 (157) | 4078.0 (174)

In general, the system of Liu et al. is subjected to a high computation load because
distorted skeleton correction using Criterion A is very time-consuming. The system of
Hilaire et al. seems to provide a reasonable level of processing time because the criterion
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to merge two discrete primitives is somewhat similar in spirit to Criterion A but with the
elimination of much of the redundant computation. Our system works most efficiently,
not only for the cases of the several images reported in Table 2.3 but also throughout the
extensive experiments we have performed. It is also noted that the number of detected
junctions (in brackets) provided by our system is much smaller than those outputted by
the other systems. We provided few illustrative examples of the detected junctions of our
approach applied to different kinds of images as shown in Figures {2.18, 2.19, 2.20, 2.21}.

2.5 Discussion

This chapter presents a new approach for junction detection and characterization in
line-drawing images. The main contribution of this work is three-fold. First, a new al-
gorithm for the determination of the region of support is presented using the linear least
squares technique. The crossing-points, in combination with the dominant points detected
from median lines, are treated as candidate junctions. Next, using these candidate junc-
tions, an efficient algorithm is proposed to detect and conceptually remove all distorted
zones, retaining reliable median line segments only. These line segments are then locally
characterized to construct the topological representations of the crossing zones. Finally, a
novel junction optimization algorithm is presented, yielding accurate junction localization
and characterization. The proposed approach is extremely robust to common geometry
transformations and can resist a satisfactory level of noise/degradation. Furthermore, it
works very efficiently in terms of time complexity and requires no prior knowledge of the
document content. The proposed method is also independent on any vectorization systems.
All of these prominent features of the proposed approach have been validated relative to
other baseline methods by our extensive experiments.

In addition to these advantages, the proposed approach has several shortcomings. First,
as this approach is dedicated to working with line-like primitives, its performance would be
degraded if applied to filled-shape objects, such as logo images. In addition, the junction
optimization process could lead to some difficulties in correctly interpreting the junction
position as originally produced by craftsmen. However, although this point is valid for
some specific domains of exact line-drawing representation, such as vectorization, we are
interested in detecting local features that would be useful to addressing the problem of
large-scale document indexing and retrieval. In this sense, a low rate of false positives in
the final results is not problematic. A last noticeable point is that the detected junctions
could be used in combination with additional features (e.g., end-points, isolated straight
lines, arcs, and circles) to obtain the complete representation of a graphical document
image. The detected junctions can be also used to address the problem of vectorizing the
line-drawings.
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Figure 2.18: Detected junctions for a synthetic symbol with different levels of noise.

Figure 2.19: Detected junctions for a real musical score image.
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Figure 2.20: Detected junctions for part of an electronical image.
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Figure 2.21: Detected junctions for a mechanical-text image.



Chapter 3

Application to symbol localization

In this chapter, an application of symbol localization in line-drawing images is developed
to demonstrate that our junction detector is robust and discriminated enough to be used
in the context of object localization. The experimental results, applied to several public
datasets, show that our system is very time- and memory-efficient. Our precision and recall
results in terms of symbol localization highlight that we outperform other methods in the
literature on this problem.

3.1 Introduction

A common problem of any symbol processing systems, recognition or spotting, is local-
ization or detection of the symbols. Symbol localization can be defined as the ability of a
system to localize the symbol entities in the complete documents. It could be embedded
in the recognition/spotting method or works as a separated stage in a two-step system
[Qureshi et al., 2008]. The approaches used for localization are similar for recognition and
spotting. All systems rely first on a primitive extraction step (e.g., connected components,
loops, key-points, lines, etc.). These systems differ mainly in the way that the detected
primitives are processed, using machine learning or retrieval and indexing techniques. Dif-
ferent approaches have been investigated in the literature to deal with the localization
problem.

One of the earliest approach employed in many systems is subgraph matching. Graph
is a very effective tool to represent line drawings. Attributed Relational Graphs (ARGs)
can be used to describe the primitives, their associated attributes and interconnections.
However, subgraph isomorphism is known to be a NP-hard problem, making it difficult
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to use the graph for large images and document collections, despite the approximate so-
lutions of subgraph isomorphism developed in the literature [Messmer and Bunke, 1996,
Bodic et al., 2009]. In addition, subgraph isomorphism remains very sensitive to the ro-
bustness of the feature extraction step, as any wrong detection can result in strong distor-
tions in the ARGs.

An alternative approach to subgraph matching is the use of a "triggering" mecha-
nism. Such a system looks for some specific primitives in line drawing images and triggers
a matching process at the symbol level within the Regions of Interest (ROIs) around
these primitives. The system in [Nguyen et al., 2009] is a typical example. In this work,
given a query symbol, the keypoints (i.e., Difference of Gaussian features) and its cor-
responding vocabularies are computed and used to find the matched keypoints from the
database documents. For each pair of two matched keypoints, the local scale and ori-
entation extracted at the keypoint in the query symbol are used to generate the ROI in
the document that probably contains the instance of the symbol. Because the number
of detected keypoints would be very large and the local scale computed at each keypoint
could be far from satisfaction, the ROI extraction step is thus fragile and time-consuming.
Triggering mechanisms have been also developed from graph-based representations, as in
[Rusinol and LLados, 2006, Qureshi et al., 2008]. These proposed systems work from the
ARGs, where the structures and attributes of the graphs are exploited to identify the ROIs
without recognizing the symbols. Triggering-based localization is very sensitive to robust-
ness of the mechanism in that any missed detection at the triggering level will result in the
failure of symbol localization.

In the other place, a different approach to deal with object localization is framing
[Dosch and LLados, 2004, Kong et al., 2011, Dutta et al., 2011]. These techniques involve
the decomposition of the image into frames (i.e., tiles, buckets, windows) in which the
frames could be overlapped [Kong et al., 2011] or disjointed [Dosch and LLados, 2004].
Local signatures are computed from the primitives contained in the frames and matched
to identify the candidate symbols. The size of the frames can be determined based on
the symbol models [Dosch and LLados, 2004, Kong et al., 2011] or set at different resolu-
tions |Dutta et al., 2011]. In this way, framing is not scale invariant as the size of the
frames cannot be dynamically adapted. The position of the frames can be set with a
grid [Dosch and LLados, 2004, Dutta et al., 2011] or by sliding [Kong et al., 2011]|. Sliding
could be performed by steps to reduce the entire processing time [Kong et al., 2011], as
any computations with overlapping would be subjected to a polynomial complexity.

A part from the before-mentioned approaches, a recent framework for symbol localiza-
tion is the use of geometry consistency checking as presented in [Nayef and Breuel, 2011,
Jain and Doermann, 2012, Rusinol et al., 2013]. Such a method concerns a pipeline of
decomposing a graphical document into a set of primitives, matching the primitives of
the model against the test image, and checking the geometry constraints among the
matches. Different techniques for geometric verification have been applied in these works.
[Nayef and Breuel, 2011]| proposed to use a branch and bound algorithm to search for a
transformation that maps a maximal subset of the matches between the primitives of the
model and the test images. |[Rusinol et al., 2013| employed a classical technique RANSAC
[Fischler and Bolles, 1981] to achieve this goal. [Jain and Doermann, 2012] incorporated
the use of orientation information of the detected features to prune the matches, following
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the verification step of pair-wise angles between every two triangles in the model and test
images.

The common drawback of all these methods is the computation complexity of the
geometric verification process. In this application, we mainly aim at demonstrating that
our contribution on junction detection can be used for symbol localization by incorporating
some addition processing steps. In that concern, we show that (1) the detected junctions
are useful to deal with the problem of symbol localization, and (2) these junctions support
the process of geometry verification in a very efficient way. Particularly, our system is
composed of four main stages, each of which is briefly described below with respect to the
Figure 3.1.

e In the first stage, the junction points are detected and characterized into different
types such as T-, L-, and X-junctions.

e The second stage decomposes a document image into a set of smooth primitives,
composing of isolated shapes (e.g., isolated circles and straight lines) and curve seg-
ments bounded between either two junctions or a junction and an end-point. These
primitives are then associated with a new set of keypoints including Line-, Arc-, and
Circle-keypoints. The obtained keypoints, in combination with the junction points
and end-points, form a complete and compact representation of graphical documents.

e In the third stage, keypoint matching is performed to find the correspondences among
the keypoints of the query and those of database documents.

e Finally, geometry consistency checking is applied to the obtained matches using a
new and efficient algorithm, which is designed to work on our specific keypoints.

E Junction Detection | Document |  Keypoint -~ Geometry
E__ &Characterization | Decomposition Matching Checking
Images Detected Symbols

Figure 3.1: Overview of our symbol localization system.

As the first stage is accomplished by simply applying our contribution as presented in
chapter 2, it will not be detailed in the following sections. Instead, we directly describe
hereafter the last three stages.

3.2 Document decomposition

We use the detected junctions to decompose a document image into a set of smooth
primitives. Here, we define the smooth primitives as those composing of isolated shapes
(e.g., isolated circles and straight lines) and curve segments bounded between either two
junctions or a junction and an end-point. This definition is derived based on the fact that
after the process of junction detection, every median line segment bounded between two
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junctions are sufficiently smooth. Otherwise, some new junction points are likely to be
detected on this segment. In this work, we restrict the smooth primitives to three kinds
of segment: straight line segment, arc segment, and circle. These basic-shape primitives

could be derived using the linear least squares (LLS) fitting technique as follows (see Figure
3.2):

e For each smooth primitive P, we try first to fit P to a straight line segment by
comparing the average distance error to a fixed threshold (e.g., 1.5 pixels in our
implementation). The distance error is simply computed as the Euclidean distance
from each point of P to the fitted straight line.

e If P is not fitted to a straight line, circle fitting will be performed next. This is also
accomplished by comparing the average distance error to a threshold but the distance
error is now computed as the Euclidean distance from each point of P to the fitted
circle.

e If P is fitted to a circle, it will be further classified as an arc primitive (e.g., opened
curve) or a circle (e.g., closed curve).

P

 r—o—0

P1 p P2 0, D
L-keypoint (p, p1, p2) C-keypoint (p, R) A-keypoint (p, p1, p2)

™ E-keypoint (q)

J-keypoint (p, sp, {6})

Figure 3.2: Basic primitive decomposition and description.

Next, each type of these primitives is characterized as a specific structural keypoint as
follows:

e A straight line primitive is represented by a triple {pr,pr,,pL,} corresponding to
the middle point and two extremity points, respectively. A triple {pr,pr,,pL,} I8
regarded as a Line-type keypoint or L-keypoint.

e An arc primitive is represented by {pa,pa,,pa,} with the same meaning as that of
a straight line primitive. A triple {pa,pa,,pa,} is regarded as an Arc-type keypoint
or A-keypoint. It is noted that the characterization of an A-keypoint is proceeded in
the same spirit as that of a junction whose two arms are pap4, and papa,.
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e A circle primitive is represented by {pc, ¢} corresponding to its centroid and radius.
A couple {pc,rc} is regarded as a Circle-type keypoint or C-keypoint.

For completeness, we call the junction points as J-keypoints and end-points as E-
keypoints. The description of a J-keypoint is performed using the same process of junction
characterization, while the description of the E-keypoints is no needed. To this end, a
document image is completely represented by a set of structural keypoints, composing of
L-keypoints, A-keypoints, C-keypoints, J-keypoints, and E-keypoints. Figure 3.3 shows a
decomposition of a document image into a set of structural keypoints.

® J-keypoints
O A-keypoints
> B | -keypoints
O C-keypoints
A E-keypoints

EE:

Figure 3.3: Keypoint-based representation of a simple document image.

3.3 Keypoint matching

In the previous stage of document decomposition, a document image is completely
represented by a set of structural keypoints. In this stage, keypoint matching will be
performed to establish the correspondences between the keypoints of the query @ and those
of the database document D. Keypoint matching is independently processed for each type
of keypoint. Particularly, matching of the L-, A-, C-, and E-keypoints is proceeded very
simply as outlined below:

e An E-keypoint (resp. C-keypoint) is always matched with any other E-keypoints
(resp. C-keypoints).

e A L-keypoint is matched with another L-keypoint if the two extremity points of one
L-keypoint are matched with those of the other L-keypoint (Figure 3.4 (a)). It is
noted that the extremity points of one L-keypoint could be the E-keypoints and J-
keypoints. Therefore, matching of two extremity points is also performed in the same
manner as keypoint matching.

e An A-keypoint is matched with another A-keypoint if the difference in direction of

the two keypoints is not significant and the two extremity points of one A-keypoint
are matched with those of the other A-keypoint (Figure 3.4 (b)).
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The matching process of the J-keypoints is often performed by pair-wise matching

between the angles of the two corresponding junction points [Xia, 2011|. Particularly, given
two J-keypoints characterized as {p, s, {Gf}z’o—l} and {q, sq, {0?}?1:‘10_1}, the information
of junction location and junction scale is used to quickly refine the matches to be described

later, and the rest is used to compute a similarity score, C(p, ¢), of matching two junctions
p and ¢ as follows:

h—1
1
Clp,q) = max{ kzo D(0f; 1 mod my* O0i4%) mod my )} (3.1)
where h = min(my, mq), H = Max(m,, mq), and

L, 07— 0] < Gunres (3.2)

0, for otherwise.

)

(6P, 6) = {

|ep - eql = Othres

———o—=.
Py % P2™~ _
AY ~ -
\ S ’,’
\ -~ (>
\\ as /,Hp/ -
\ q - -
oF P1 P2
(@) (b)

Figure 3.4: The matching process of L-keypoints (a) and A-keypoints (b).

7| p (3-junction)
/ 7|T g (5-junction)

(@ (b)
Figure 3.5: An example of context distortion of the detected junctions: a 3-junction p in
(a) is distorted as a 5-junction q in (b).

The similarity score C(p, q) is in the range [0, 1] and 0yp,cs is an angle difference toler-
ance. Most of the time, two J-keypoints are matched if their similar score is higher than
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a threshold. However, in some specific domains taking object localization for example, a
query object or symbol is often connected to different context information appearing in a
document. Figure 3.5 provides an example where the two instances of the query symbol are
touched resulting in some context distortion of the detected junctions (e.g., a 3-junction p
is distorted as a 5-junction q). In such cases, using the similarity score C(p,q) could be
too restricted to find corresponding junctions.

We therefore relax the junction matching step by introducing a new constraint as
follows. Two J-keypoints p and ¢ are matched if an inclusion test is hold for these two
junctions. Here, we consider that p is included in ¢ if there are exact m, — 1 angle matches
between the angles of p and ¢. This implies: C(p, ¢) * Max(my, mg) = m, — 1.

3.4 Geometry consistency checking

Given a query symbol ) and a database document D, their keypoints are first detected
and matched as described in the previous sections. The obtained matches are finally verified
by checking geometry consistency. This step will remove false matches and cluster the
remaining matches into different clusters, each of which indicates an instance of the query
symbol. Concerning this problem of geometry consistency checking, two main strategies
are often exploited in the literature. A brief review of these two strategies is given in the
following.

The first strategy treats data (i.e., the matches) in a top-down way. One typical
technique belonging to this strategy is known as RANSAC (RANdom Sample Consensus)
[Fischler and Bolles, 1981|. The key idea of RANSAC is to randomly select k& matches for
estimating a transformation model (typically an affine transformation and thus & = 2 or 3).
The model is then assigned with a confidence factor, which is calculated as the number of
matches fitting well to this model. Next, these steps are repeated a number of times to find
the model with the highest confidence. RANSAC is often used to find a single transforma-
tion model between two images with a high degree of accuracy of the derived parameters,
provided that the ratio of inliers and outliers occurring in the data is sufficiently high
(> 50%). However, when this is not the case, it is difficult to use RANSAC. In addition,
RANSAC would be time-consuming because the number of iterations is often large to en-
sure that an optimal solution could be found. Precisely, the computation complexity is
O(MN) where M is the number of iterations and N is the size of the data. A family of ad-
vanced algorithms based on the RANSAC technique is reported in [Choi et al., 2009] where
the accuracy and robustness are thoroughly investigated. The computation complexity of
these algorithms is also evaluated as the trade-off between accuracy and robustness.

The second strategy treats data in a bottom-up manner by performing a voting process
starting from all data points, and then finding the parameters (typically composing of 4
parameters: orientation, scaling, and z, y-translation) corresponding to the dense density
areas of support. One typical technique falling this strategy is known as Generalized
Hough Transform (GHT) [Ballard, 1981]. GHT is most commonly used for the cases where
multiple transformation models are presence in the data. It is less accurate than RANSAC
in terms of parameter estimation but very robust to noise even if a large number of outliers
are presence. However, because GHT requires a process of parameter quantization, it is
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subjected to very high cost of memory space O(M?) and processing time O(N?)!, and
is sensitive to the quantization of the parameters. A comparative evaluation of the GHT
techniques can be found in [Kassim et al., 1999]. In this work, different extensions of
the GHT method are presented to reduce the memory requirement and computational
complexity.

In our case, as each keypoint of the query symbol is often occurred in a database
document with a high frequency, the outliers are thus significantly higher than the in-
lier matches. In addition, as multiple instances of a query symbol can be appeared in a
database document, it is therefore not a good idea to use some techniques like RANSAC
or GHT because of the aforementioned weaknesses. We therefore present, below, an effi-
cient algorithm to deal with the problem of geometry consistency checking. The proposed
algorithm incorporates the advantages of both RANSAC and GHT while avoiding their
weaknesses. It exploits the information extracted from the matches of L- and A-keypoints
to speed up the process of estimating the affine transformation models.

Algorithm 1 Estimation of the affine transformation models
Input: Two set of structural keypoints of a query ) and a document image D, and a
match list 7" between the keypoints of Q and D
Output: A set of affine transformation models (Fy;)
K «+ sort the L- and A-keypoints of Q in descending order of the primitive’s length
m + | K|
141
Fout < (Z)
while i <m/2 do
p < I
for each match in T bwteen p € Q and ¢ € D do
F + solve the two linear equations formed by the extremity points of p and ¢
np < count the matches fitting to F'
if np > nypres and F ¢ Fpyy then
Fout <_Fout+{F}
end if
end for
11+ 1
end while

Our method of geometry consistency checking is outlined in Algorithm 1. The basic
idea is to directly estimate a geometry model F' (i.e., an affine transformation) based on
every match formed by a pair of either two L-keypoints or two A-keypoints. This idea is
inspired by the fact that a pair of two matched lines (or arcs) provides us with 4 parameters
(i.e., orientation, scaling, and z, y-translation) of an affine transformation F. As a result,
we need only one match to estimate a model F' other than two matches as the cases of GHT
and RANSAC. Next, we apply the transformation F' to all the keypoints detected on the
query @, resulting in a new set of projected points on the database document D. If there
is a sufficiently large overlap among the projected points and the keypoints of D matched

!N and M, are the number of matches and sampling bins, respectively.
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with those of ), the transformation F' is accepted and used to localize the position of the
corresponding instance of () on D. Here, we consider two points are overlapped if the
distance between them is less than a threshold. Alternatively, we can consider two points
are overlapped if they are positioned in a local window of the size €45 X €4;5¢. This can be
efficiently done by using a 2D lookup table. The memory complexity is thus linear to the
image size. It was found empirically that the parameter €g4;5; € [10, 20] is a common setting.
It is also noted that we can set €g4;5; to the minimum distance between two keypoints of
the query document Q projected on the database document D to ensure no mismatch in
our geometry consistency checking step.

Regard to the computation complexity, as the number of the L- and A-keypoints of Q
is quite small, and few real computations are needed, the proposed method is very time-
efficient. Particularly, the computation complexity of the proposed method is limited up
to a linear order O(eziStNlNz), where N7 is the number of keypoints of @@, and N5 is the
number of matches corresponding to the L- and A-keypoints of (). In addition, with a bit
prior knowledge of the dataset, we can quickly prune a large number of matches by setting
the lower and upper scales for the query symbol. In this way, the local scales associated
to the keypoints are used to prune the matches. It is also noted that there is no need to
process all the L- and A-keypoints of ). In our experiments, we first sort m L- and A-
keypoints of @ in a decreasing order of their length and then choose the first m /2 keypoints
to be processed. Since the primitives having higher length would be less distorted by the
transformation, the estimation of the parameters is thus more robust. For each accepted
model F', we obtain an instance of the query. Therefore, multiple instances of the query
are thus successfully detected with respect to the number of accepted models. Figure 3.6
demonstrates the result of applying this step of geometry consistency checking.

(b)

Figure 3.6: Geometry consistency checking: (a) the matches before checking; (b) the
matches after checking.

3.5 Experimental Results

For performance evaluation of the proposed approach, we selected the latest dataset
for symbol spotting in GREC20112 [Valveny et al., 2011]. The detail of this dataset is

2http://iapr-tc10.univ-Ir.fr/index.php/final-test-description
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described on Table 3.1. For performance evaluation, we selected the evaluation met-
ric in [Rusinol and Llados, 2009b| in order to make the comparison with other methods
[Dutta et al., 2013a, Dutta et al., 2013b]. This metric includes precision (P), recall (R)
and Fscore computed as follows.

SInt SInt P-R
P = R = F =2
Shet’ Sar’ seore P+R

Where St,,; is the sum of intersection areas between the bounding boxes retrieved by the
spotting system and ground-truth, Sg.; is the sum of areas of the bounding boxes retrieved
by the spotting system, and Sgr is the sum of areas of the bounding boxes in ground-truth.
It is worth mentioning that each bounding box (Bg) in ground-truth is counted at most
once. Typically, By will be marked as already considered if there exists a bounding box
(Byet) retrieved by the spotting system such that the ratio of the intersection of their areas
to the union of their areas exceeds a given threshold (e.g., 75% in our experiments). This
is needed to avoid biased scores caused by multiple detections of a same symbol at a same
location. Furthermore, we have set a strict constraint for our system in that the ratio of
overlapping area to union area of any two retrieved bounding boxes is always less than a
threshold (10% in our experiments).

Table 3.1: Dataset used for symbol spotting in GREC2011.

’ Test Set ‘ Models ‘ Images ‘ Queries ‘ Symbols | Noise Image Size
ez |21 | o0 | izr |71 | Level 1] Min1T00x1600
e B V2] Maxc4400x2100
ﬁﬁﬁ; 5 2 o LLCL(Z?11 Min:2300x2500
if}ﬁ: 12 38 3;‘3 gg; EEXZ} g Max:5400x2900

Table 3.2: Experimental results of our system (%).
Test Set | Precision ‘ Recall ‘ F-Score ‘ Max 9veriap ‘ Mean Time (ms) ‘

Union
Elecl. 0.85 0.84 0.84 0.00 % 723.38
Elec2. 0.86 0.79 0.82 0.00 % 677.83
Elec3. 0.92 0.81 0.86 5.76 % 655.39
Elec4. 0.80 0.81 0.80 5.76 % 1097.05
Archil. 0.91 0.96 0.93 6.69 % 1521.47
Archi2. 0.91 0.92 0.92 9.92 % 1341.90
Archi3. 0.94 0.89 0.92 9.92 % 1605.80
Archid4. 0.91 0.90 0.90 10.63 % 1409.88

The detailed results of our system are reported on Table 3.2 including precision, recall,
Fscore, maximum ratio of overlapping area to union area of any two bounding boxes re-
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trieved by our system, and mean processing time of a complete query. General speaking,
the proposed system achieves quite good results for both detection and accuracy scores.
On average, the Fscore(s) of the proposed system are 0.83 and 0.92 for electrical and ar-
chitectural datasets, respectively. In addition, these scores are obtained under a very small
overlap of the detected bounding boxes. It is noted that the results obtained on the ar-
chitectural dataset are much better than those on the electrical dataset. The reason lies
in the fact that in the electrical dataset, more query symbols are used and many query
symbols looks very similar making them difficult to be correctly distinguished. The pro-
cessing time is calculated as the mean time of the whole process (i.e., both the online and
offline phases), subjected to our specific computer configuration: Intel(R) Core(TM) i5
CPU 2.4GHz, RAM 2.4 GB, Windows XP.

The last experiment is performed using the SESYD database® [Delalandre et al., 2010].
The detail of this dataset is summarized on Table 3.3. This time, we measure the processing
time for the online phase only. That is, we compute the query time for returning the full
list of the detected symbol entities given a query symbol. Table 3.4 reports the obtained
results of our system. It can be seen that we obtain very good results in terms of both
detection rate and recall. On average, the proposed system achieves the precision of 0.92
and the recall of 0.95, resulting in the F-score of 0.93. The mean query time is just 0.3 (s).

In order to make some comparative results, we provide on Table 3.5 the results of some
recent symbol localization systems. It is clear that our system much outperforms all these
baseline methods. It is worth mentioning that the system of [Dutta et al., 2013b| gives the
lowest processing time (i.e., 0.7 (s)) because it was integrated with an indexing hashing-
based scheme. Our system requires 0.3 (s), on average, to perform a query without using
any indexing methods.

Table 3.3: The detail of the SESYD (floorplans) dataset.

] Test Set ‘ Images ‘ Models ‘ Symbols ‘ Noise ‘ Image Size ‘
floorplans16-01 100 16 2671 None | 6775 x 2858
floorplans16-02 100 16 2488 None | 3059 x 3341
floorplans16-03 100 16 2661 None | 2218 x 2475
floorplans16-04 100 16 3251 None | 2056 x 1837
floorplans16-05 100 16 2148 None | 2596 x 2313
floorplans16-06 100 16 2068 None | 2352 x 2507
floorplans16-07 100 16 3898 None | 5498 x 2961
floorplans16-08 100 16 2260 None | 3026 x 2967
floorplans16-09 100 16 3948 None | 4307 x 1893
floorplans16-10 100 16 2653 None | 4349 x 2227

Figure 3.7 shows an example of our symbol localization system where the query is
perfectly localized even though it is embedded into a complicated database document.
There are, however, some queries as shown in Figure 3.8 that the proposed system fails
to detect the symbol "outlet" because of a very limited number of keypoints detected on
the instance of the symbol on the database document. Besides, we showed in Figure 3.9

3http://mathieu.delalandre.free.fr/projects/sesyd/symbols/floorplans.html
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Table 3.4: The results of our system for the SESYD (floorplans) dataset.

Test Set Precision ‘ Recall ‘ F-score ‘ Mean time (ms) ‘
floorplans16-01 0.97 0.95 0.96 339.5
floorplans16-02 0.89 0.98 0.93 284.2
floorplans16-03 0.87 0.91 0.89 242.3
floorplans16-04 0.93 0.95 0.94 418.6
floorplans16-05 0.92 0.98 0.95 112.3
floorplans16-06 0.90 0.97 0.93 161.1
floorplans16-07 0.96 0.97 0.96 621.2
floorplans16-08 0.94 0.95 0.94 226.8
floorplans16-09 0.90 0.98 0.94 406.8
floorplans16-10 0.88 0.81 0.84 252.3

Average 0.92 0.95 0.93 306.5

Table 3.5: Comparision of recent methods for symbol localization on the SESYD
(floorplans-01) dataset.

’ System ‘ Precision ‘ Recall ‘ F-score | Mean time (s) ‘
Our system 0.97 0.95 0.96 0.34
[Dutta et al., 2013a| 0.62 0.95 0.74 0.57
[Dutta et al., 2013b] 0.41 0.82 0.52 0.07
[Nguyen et al., 2009] NA NA 0.82 NA

another example that the system correctly detects multiple instances of the symbol "sofal"
even these detections take part of a different symbol (i.e., "table2"). This further confirms
the interesting results of our system.

3.6 Discussion

We have presented an application to symbol localization in line-drawing images using
junction feature and geometry consistency checking. This system proves that our contribu-
tion on junction detection can be used in the context of object detection and localization
by incorporating some feature extraction steps at primitive level. As the junction detectors
is robust and accurate, the obtained primitives are stable under the different contexts of
the documents. These primitives are used to support object matching, geometry consis-
tency checking, and object localization. In that sense, this highlights that our detector
can support and to be combined in an efficient way within a vectorization process. The
experimental results in terms of symbol localization confirm the advantages of the system
for both efficiency and accuracy.

114



3.6. DISCUSSION

Figure 3.7: An example of symbol localization: a query symbol (left) and the detected
instances of the query (red bounding boxes).

E-keypoint N '," B

L-keypoint :

A-keypoint

Figure 3.8: The system fails to detect the symbol "outlet" (left) due to the omission of the
E-keypoint and the displacement of the L-keypoint on the instance of the symbol (right).
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Figure 3.9: Few examples of the detected symbols of our system.
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Feature indexing in high-dimensional
vector space

117






Chapter 4

State-of-the-art in feature indexing

In the previous chapter, we have provided a local detector of junction points. As it is
often the case that the detected keypoints shall be described by local descriptors followed
by a further step of descriptor indexing. Hence, the next two chapters are attributed
to the problem of feature indexing. This chapter reviews the state-of-the-art in feature
indexing in high-dimensional feature vector space. The main ideas, favourable features
and shortcomings of each method are carefully discussed. We also provide our subjective
remarks for these methods and highlight the need of an advanced contribution for an
efficient indexing technique.

4.1 Introduction

As we have discussed earlier, robust feature extraction is of central importance for an
image processing system. Furthermore, feature indexing is of a crucial need for all the real-
time image processing applications. For these reasons, the two next chapters attempt to
deal with the problem of feature indexing. At first, an overview of the existing techniques
is provided. Next, an attempt is made to give a new contribution in feature indexing
for quickly answering the queries of proximity search. Let us first describe the general
context of the fast proximity search problem. Considering a scenery where the objects
are represented by real feature vectors in a feature vector space S, the problem of finding
the nearest neighbor of a given query object q over a dataset X has been well-established
in the literature. Usually, two problematic factors make the difficulty of this problem.
First, the dataset X is often composed of very large data points (e.g., millions of feature
vectors). Second, each data point is of a high-dimensional feature space (e.g., > 100). A

119



4.1. INTRODUCTION

conventional solution is to sequentially search for each object p € X, to find the closest
one of ¢, based on some similarity distance function d : S x S — R. While this brute-
force search is practicable in a low-dimensional and small-scale space, it is subjected to
the problem of curse of dimensionality when working on high-dimensional and large-scale
space [Yamamoto et al., 1999].

To deal with this problem, many approaches have been proposed in the literature
supporting the tasks of exact/approximate nearest neighbor (ENN/ANN) search. These
approaches are mainly concerned with designing an efficient indexing scheme. Basically, an
indexing algorithm is formulated as the task of reorganizing the data so that it is able to
answer quickly the query of proximity search [Beis and Lowe, 1997, Chavez et al., 2001].
For completeness, we introduce hereafter popular formulations of the ENN and ANN search
in the literature.

e Exact nearest neighbor search [Gionis et al., 1999]: given a query object ¢ and a
database X, return an object p* € X such that Vp € X : d(p*,q) < d(p,q).

e Exact K-nearest neighbor search |Gionis et al., 1999|: given a query object ¢ and a
database X, return at most K objects {p;}X_ | in X such that Vp € X : d(p},q) <

d(ps,q) < ...<d(pl,q) <d(p,q).

e Range search [Bohm et al., 2001]: given a query object ¢ and a database X, and a
distance € > 0, return all objects p* € X such that d(p*,q) < e.

e c-approzimate nearest neighbor search (c-ANN) |Gionis et al., 1999|: given a query
object ¢ and a database X, and a parameter ¢ > 1 and let pe,qct be the closest object
to the query g, return an object p* € X such that d(p*,q) < ¢- d(pevact,q). The
parameter c is treated as approxzimate factor or approximate tolerance. If ¢ = 1, we
obtain the exact nearest neighbor of ¢.

Several surveys of indexing algorithms in vector space are presented in [Bohm et al., 2001]
and [Liu et al., 2004]. Such methods are often categorized into four classes as shown in
Figure 4.1. These approaches are detailed in the following.

Feature indexing in
vector space

Space partitioning Other methods
methods
Clustering Hashing
methods methods

Figure 4.1: Different approaches for feature indexing in vector space.
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4.2. SPACE-PARTITIONING-BASED METHODS

4.2 Space-partitioning-based methods

The main spirit of the space-partitioning-based indexing methods is that they hier-
archically divide the underlying data space into sub-spaces such that the cardinality of
every sub-space at the same level is roughly equivalent. The partitioning process is re-
peated until the cardinality of every new sub-space at the highest level is small enough.
As the resulting sub-spaces form a hierarchical representation of the original data space,
a tree-based structure is often chosen to represent these sub-spaces. Fast proximity search
is then accomplished using various tree traversing strategies including back tracking and
priority search. Table 4.1 briefly outlines the main characteristics of these methods. For
each method, the main ideas, favourable features, and shortcomings are discussed. The
detail of each method is given in the following.

KD-tree: KD-tree |[Friedman et al., 1977] is probably argued as one of the most popu-
lar techniques for feature indexing. Its basic idea is to iteratively perform a partition of X
into two roughly equal-sized subsets X; and X, by using a hyperplane perpendicular to one
of the axes in RF. Particularly, a partition is performed at the i** dimension (1 < i < k)
using a pivot value s,,.q4 to split X into two subsets X; and X,.. The X; contains the points
whose values at the " dimension are smaller than s,,.q, while the X, contains the rest
of X. A new node is then constructed to record the split information such as the split
axis and the pivot value. The pivot value s,,.q is often chosen as the median value at the
i*" dimension of all the points contained in the underlying dataset. This process is then
repeated for the two new subsets X; and X, until the size of each subset falls below a
pre-defined threshold. The resulting tree is known as a balanced KD-tree whose leaf nodes
form a full splitting space of the original data set X (Figure 4.2).

= Internal nodes e Leaf nodes

Data points: Y
(1.4), (8,6), (2.3),(5.3), (4.5), (6,7), (7, 1) 77 .
64
X axis ¢ 5| .
Y axis ¢------- 4
3+ °
24
1" °
i —t X

o 1 2 3 4 5 6 7 8

Figure 4.2: Illustration of data partitioning of the KD-tree in an 2D space: the resulting
KD-tree (left) and the corresponding partitioned space (right).

Searching for a nearest neighbor of a given query point ¢ in the KD-tree is proceeded
using a branch-and-bound technique whose pruning rule works as follows: a node u is
selected to explore if its hyper-rectangle does intersect the hyper-sphere centered at ¢
with a radius equal to the distance of ¢ to the nearest neighbor found so far (Figure
4.3). The most efficient technique for constructing such a KD-tree has been reported by
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4.2. SPACE-PARTITIONING-BASED METHODS

[Wald and Havran, 2006] with the time complexity O(Nlog(/N)) and the worst case search
time was reported as O(kN'~1/*) in [Lee and Wong, 1977], where N is the number of nodes
in the tree. The KD-tree has been shown to work efficiently when the dimensionality is low
(e.g., most often k < 20), otherwise its performance is almost close to brute-force search.

7 Query I(4.5,7)

: ! o «———1The closest

\ / neighbor

\ ’
\

The first IeéT\\
T node found —
4 .

X

o 1 2 3 4 5 6 7 8

Figure 4.3: Illustration of the searching process in the KD-tree: only the regions whose
bounding boxes do intersect the circle are inspected.

The KD-tree has been extended to deal with the problem of approximate nearest neigh-
bor search by several researchers. [Beis and Lowe, 1997| introduced an extension of the
KD-tree, known as Best-Bin-First (BBF) or priority search, to quickly find approximate
nearest neighbors of a given query point. The improvement of the BBF technique is twofold:
(1) it limits the maximum number of leaf nodes to be visited; and (2) it visits the points in
the order of increasing distance from the query point to the bins of splitting space. The first
improvement indicates that the search procedure will be terminated early once the number
of visited nodes in the tree is greater than a specific value. The second improvement guides
the search procedure to the branches (or bins) which are "closer" to the query. This is
accomplished by defining the distance from the query to a bin as the minimum distance
to the points in the bin boundary. Their experimental results showed the efficiency of the
BBF algorithm for a synthetic dataset with the dimensionality k& € {8,15}.

NKD-trees and PKD-trees: The use of priority search was further improved in the
work of [Silpa-Anan and Hartley, 2008|, where the author constructed multiple KD-trees,
called NKD-trees, with different settings of the orientation parameter. That is, the data
are rotated by different angles before constructing the KD-tree. The obtained results are
quite interesting. Based on that, the idea of using multiple KD-trees has been developed
in two new different ways. In the first place, multiple randomized KD-trees (RKD-trees)
are constructed, where each tree is built by selecting randomly, at each node, a split axis
from few dimensions having the highest variance. In the second place, multiply random-
ized KD-trees are constructed in the same manner but the data are initially aligned to
the principal axes obtained from PCA analysis. The later indexing scheme is thus called
principal component KD-trees (PKD-trees). Experimental results showed significantly out-
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4.2. SPACE-PARTITIONING-BASED METHODS

standing performance compared to the use of a single KD-tree because the use of multiple
randomized trees gives a better chance of reaching the true answers than using a single
tree.

PA-trees: The PA-tree (Principal Azis tree) [McNames, 2001] extends the KD-tree at
twofold. First, it constructs a bigger fanout tree by partitioning dataset at each step into
n. subsets (n. > 2). Second, PCA is applied to the underlying dataset at each partition
to select the split axis having the highest variance. Therefore, the obtained regions are
treated as hyper-polygons rather than hyper-rectangles as in the KD-tree. Consequently,
this approach complicates the process of computing the lower bound of the distance from
the query to a node of the tree. To facilitate this matter, the author proposed a convenient
solution for computing the lower bound using the cosine rule as illustrated in Figure 4.4.
Let x be any point in some node of the tree, say the Region 2, and b2 be the projection of
a query point ¢ on the common split hyper-plane between the Region 2 and the Region 1.
By applying the cosine rule, the distance d(q, z) is computed as follows:

d(‘]? x)Q = d(q7 b2)2 + d(b27 .’,12')2 - 2d(Q7 b2)d(b27 :U) cos ZLqbax (41)

As the angle Zgbyxz > 90°, Equation 4.1 implies: d(q, x)? > d(q, b2)? +d(ba, z)?. Hence,
the lower bound d(q, z)? can be recursively computed via d(bs, z)? as follows:

d(q, )% « d(q,b2)? + d(by, z)? (4.2)

It is noted that each time of computing an intermediate distance, it requires O(k)
real computations to compute d(q, b2)? as the PCA is applied to every level of partition-
ing. Despite of the heavy computations on the lower bounds, the PA-tree was showed to
outperform many other indexing schemes for many datasets.

Region 5

Figure 4.4: Illustration of computing the lower bound using the cosine rule of the PA-tree
(reprinted from [McNames, 2001]).
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R-tree: The R-tree (Rectangle tree) |Guttman, 1984| is dynamically built based on
an idea that nearby points are grouped together to form an internal node represented by
a minimum bounding hyper-rectangle (Figure 4.5). Each internal node of the R-tree has
at most M children and the root contains at least two children. Each leaf node contains
also at most M entries corresponding to data points. Inserting a new data object, p,, into
the R-tree is performed by two processes: target node searching and node splitting. The
former process traverses down the tree and considers all the subtrees whose hyper-rectangles
contain p,. Tie! resolving is treated by choosing the child node whose bounding hyper-
rectangle needs least area enlargement to include p,, and further selecting the one with
the smallest volume if necessary. This continues when reaching a leaf node. If the number
of entries at this leaf node does not exceed M, the new point p,, is simply inserted to the
leaf node. Otherwise (e.g., this case is called overflow), node splitting is performed to split
(M +1) points into two new nodes, subjected to an optimal criterion that the total volume
of two new bounding hyper-rectangles is minimized. Then, upward change propagation
is performed to update the bounding hyper-rectangles, and to split higher-level nodes, if
necessary. Once the R-tree has been constructed, the range search algorithm starts from
the root and visits every subtree whose the bounding hyper-rectangle does intersect the
range query. This continues when reaching the leaf nodes, where only the entries lying
inside the query range are returned as final answers. In this way, many branches of the
tree are pruned, providing rapid answers of proximity queries. The main challenge of this
tree is realized on the process of constructing a balanced tree, while maintaining at the
same time the minimal overlap among the bounding hyper-rectangles.
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Figure 4.5: The construction of the R-tree (right) for a dataset (left); (reprinted from
[Guttman, 1984]).

RT-tree: The R™-tree [Sellis et al., 1987] improves the R-tree in a different way. It
optimizes the overlapping of internal nodes by allowing a new data object p,, to be inserted
into several leaf nodes. To insert p, into the tree, the target leaf node is first detected
in a similar manner as in the R-tree. If overflow happens at the leaf node, node splitting
will be performed. In this case, the leaf node is partitioned into two subsets by finding a

1This means that more than a single solution is happened.
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cutting hyper-plane perpendicular to one of the axes, subjected to several optimal criteria,
including minimal coverage of dead space (i.e., empty space of each new subset) and min-
imal number of hyper-rectangle splits. In contrast to the splitting process of the R-tree,
node splitting in RT-tree may be propagated to both upward and downward nodes. Range
searching in the R™-tree is more efficient than in the R-tree as the overlap space is taken
place at the leaf nodes only. However, RT-tree requires a logarithmically increase of mem-
ory space as the points are duplicated at the leaf nodes. The overlap is therefore shifted
to the leaves, making the inspection of multiple paths at the leaf nodes necessary.

R*-tree: The R*-tree |[Beckmann et al., 1990] is another development of the R-tree,
where the main improvements are attributed to two process of searching for a target leaf
node and inserting a new data object. Instead of using the sole criterion of area enlargement
to determine the best path, the R*-tree makes use of both area enlargement and overlap
enlargement when searching for the best path. Particularly, given a new data object p, to
be inserted, the process of searching for the target leaf node is basically relying on that in
the R-tree, but with the following modifications at each step:

e If the children of the current node, pcy-, point to the leaves, then choose the entry
whose hyper-rectangle needs least overlap enlargement to include p,,. Tie resolving
is handled by selecting the one, which needs least area enlargement, followed by the
selection of the entry with the smallest hyper-rectangle volume, if needed.

e If the children of p.y do not point to the leaves, then choose the entry whose hyper-
rectangle needs least area enlargement to include p,, followed by selecting the one
having the smallest hyper-rectangle volume.

Then, p, is added as a new entry of the obtained target node if its capacity is not full.
If it is not the case, overflow is handled by either reinsertion or node splitting. Reinsertion
is applied if the children of the target node have not been reinserted previously, and is
accomplished by reinserting the k entries farthest away from the current node. If node
splitting is applied, several optimal criteria are employed, including minimization of total
volume of two new nodes, minimization of overlap volume of two new nodes, minimization of
total surface of two new nodes, minimization of storage utilization. Upward propagation for
handling overflow might be needed. Experiments showed a superiority search performance,
compared to the original R-tree. However, as mentioned in [Berchtold et al., 1996|, the R*-
tree performs poorly on high-dimensional space (> 5) because the overlap at the internal
nodes increases rapidly with respect to the increase of data dimensionality.

SS-tree: The SS-tree (similarity search tree) [White and Jain, 1996] is a new varia-
tion of the R*-tree where its nodes are represented by hyper-spheres rather than hyper-
rectangles. A hyper-sphere in the SS-tree is defined by a centroid and a radius computed
as the biggest distance from the centroid to all elements contained in the hyper-sphere.
To insert a new object p, into the tree, a target leaf node is first detected to contain
pn by descending the tree and choosing at each step the subtree whose centroid is clos-
est to p,. Next, the process of node insertion and reinsertion is quite similar to that
in the R*-tree. The only difference is in the process of node splitting, where the di-
mension with the highest variance is selected as the split axis, and the split location is
selected such that it minimizes the sum of variances on each side of the split plane. Exper-
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iments shows better results of the SS-tree in comparison with the R*-tree. However, the
problem with the SS-tree is the difficulty in yielding overlap-free of the splitting process
[Bohm et al., 2001]. In addition, the use of the hyper-spheres, in general, occupies higher
space than the hyper-rectangles in high-dimensional space, making the similarity search
less efficient [Katayama and Satoh, 1997, Bohm et al., 2001].

Figure 4.6: The construction of the SR-tree (reprinted from [Katayama and Satoh, 1997]).

SR-tree: The SR-tree (Sphere/Rectangle-tree) [Katayama and Satoh, 1997] overcomes
the weakness of the SS-tree by assembling the spirit of the R*-tree and SS-tree into an
unified scheme. A node of the SR-tree is represented by the common space (R) of the
hyper-sphere and the hyper-rectangle as shown in Figure 4.6. Unfortunately, the space
R is not explicitly computed due to the complicated computation of the intersection be-
tween the hyper-rectangle and hyper-sphere. Instead, each node of the SR-tree records
the information of both the hyper-sphere and hyper-rectangle. Given a data object ¢, an
estimation of the distance from ¢ to R is provided as the biggest value of the minimum dis-
tances from ¢ to the corresponding hyper-sphere and hyper-rectangle. Next, the insertion
algorithm is performed essentially similar to the SS-tree. Experimental results reported
better performance of the SR-tree, compared to the SS-tree and R*-tree.

X-tree: One common weakness of the R-tree, R*-tree, and R*-tree is to maintain
a minimized overlap volume of the bounding hyper-rectangles when proceeding on high-
dimensional space. All the heuristic solutions introduced in these works address this prob-
lem to some extent but not completely resolved [Berchtold et al., 1996, Bohm et al., 2001].
The X-tree (eXtended node tree) [Berchtold et al., 1996] gives more investigation for the
optimization of overlap in the nodes of R-tree-based structures. The new investigation of
the X-tree is two-fold. First, it introduces a new kind of internal node, so-called super-node.
A super-node is similar to an internal node used in the R-tree-based structures except with
a big capacity for containing its entries. Second, it introduces a new split procedure for
optimizing the overlap of the hype-rectangles. The split procedure first tries to find an opti-
mal split of the overflow node by using the same heuristic rules as presented in the R+-tree
and R*-tree. If the obtained overlap is still high enough, the split procedure tries to find an
overlap-free split relying on split history obtained previously. If the obtained split results
in unbalance nodes (i.e. the difference in cardinality of each new node is high enough), the

127



4.3. CLUSTERING-BASED METHODS

split procedure terminates without any available splits. In this case, the current node is
extended to a super-node. The super-nodes again can be extended by one addition block
if no available splits are found. Experiments showed the efficiency of the X-tree compared
to R*-tree and TV-tree by up to two orders of magnitude in higher-dimensional space.

4.3 Clustering-based methods

The clustering-based indexing methods differ from the space-partitioning-based meth-
ods mainly in the step of tree construction. Instead of dividing the data using a hyper-plane,
these methods employ a clustering method such as K-means and K-medoids to iteratively
partition the underlying data into sub-clusters. The partitioning process is repeated until
the size of every sub-cluster falls below a threshold. A tree-based structure is constructed
to hierarchically represent the resulting sub-clusters at all levels of decomposition. Proxim-
ity search is often handled using a branch-and-bound algorithm. Table 4.2 briefly outlines
the main characteristics of these methods.

K-means clustering tree: One of the first clustering-based trees was reported by
[Fukunaga and Narendra, 1975]. The proposed algorithm recursively divides all points in
the dataset into smaller regions using the K-means clustering technique, and constructs
a corresponding clustering tree. Each node p of the tree has the following parameters:
{Sp, My, Ny, rp} corresponding to the set of data points contained in p, the cluster center,
the number of data points, and the farthest distance from M, to an X; € S}, respectively.
The iterative clustering process terminates when the size of each obtained region falls below
a threshold. Searching for k-nearest neighbors of a given query ¢ is then proceeded by a
branch-and-bound algorithm. Let Y be the current nearest neighbor of ¢, two following
pruning rules are used to eliminate the branches too far from the query:

e Rule 1: A node p will be not searched if d(q,Y) + r, < d(g, M)) as illustrated in
Figure 4.7 (a).

e Rule 2: A point X; € S, will not be the nearest neighbor of ¢ if d(q,Y)+d(X;, M) <
d(q, M) as illustrated in Figure 4.7 (b).

Experiment results demonstrate the efficiency of the proposed algorithm for a small
dataset (1000 data points).

Y: Current nearest Xi Y: Current nearest
neighbor to q M) neighbor to q

Y.
Y Y

(a) (b)

Figure 4.7: Illustration of the rule 1 (a) and rule 2 (b) for tree pruning; (reproduced from
[Fukunaga and Narendra, 1975])
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Vocabulary K-means tree: [Nister and Stewenius, 2006 proposed a hierarchical vo-
cabulary tree for representation of feature vectors. At first, the K-means algorithm is
employed to partition the feature vectors into K groups, where the parameter K is treated
as the branching factor of the tree rather than the number of cluster centers as usual. Each
group contains the feature vectors closest to a particular center. This process is recursively
repeated for each of the obtained groups until the height of the tree is higher than a pre-
defined level L. The nodes at the highest level are considered as leaf nodes, containing the
actual feature vectors. In this way, the tree is hierarchically constructed and defines the
quantized cells of feature vectors treated as the visual vocabularies. Figure 4.8 illustrates
this process. Next, each node i of the tree is assigned with a weight w; computed as follows:

w; = In ]]\\2 (4.3)
where N is the number of images in the database and N; is the number of images in the
database such that at least one feature vector contained in each image passes through node
i. Given a query feature vector, a path is defined by traversing down the tree until a leaf
node is reached. At each intermediate level, the node with the center closest to the feature
vector is selected to be further explored. Image retrieval is performed by computing a
relevant score between a query image and each database image. This relevant score is
computed as follows. A global descriptor is created for each image by accumulating the
weighted frequencies of the feature vectors of the image whose corresponding paths pass
through the nodes of the tree. The relevance score of two images is then defined as the
normalized difference between the global descriptors.

Figure 4.8: Construction of the vocabulary tree with the branching factor K = 3 (reprinted
from [Nister and Stewenius, 2006]).

Agglomerative clustering tree: |Leibe et al., 2006] proposed an efficient clustering
and fast matching methods by combining the advantages of the K-means and agglomerative
techniques. In contrast to the traditional K-means technique, the agglomerative algorithm
builds a hierarchical clustering tree in a bottom-up manner. Particularly, starting from the
data points, it iteratively selects and merges the pairs of two clusters up to the root node
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of the tree. At the beginning, each data point is a cluster. The criterion for selecting two
clusters to be merged is based on the average similarity which is computed as the average
pairwise similarity between the points of the two clusters [Guha et al., 1998]. Therefore,
the proposed algorithm can be considered as a fusion of both top-down and bottom-up
clustering strategies. First, an initial partitioning of the data points is performed by divid-
ing them into two subsets corresponding to Laplacian maxima and minima. Each subset is
then further partitioned using the K-means algorithm where K is the number of clusters in
each subset and is set to be small for gaining efficiency. Next, the agglomerative clustering
technique is independently applied to each resulting partition. Finally, the agglomerative
algorithm is run once more on all the clusters obtained previously. For fast matching
and searching, a binary ball tree is constructed in which two children of a node corre-
spond to two clusters merged during the agglomerative clustering process. Fast searching
is accomplished with the use of the triangle inequality rule. Experimental results showed
the efficiency of the proposed clustering algorithm and significant speedup is achieved for
feature matching and searching.

Priority K-means clustering tree: [Muja and Lowe, 2009] extended the work of
[Fukunaga and Narendra, 1975] by incorporating the use of priority queue or best-bin-
first [Beis and Lowe, 1997] to the hierarchical clustering tree. In their work, approximate
nearest search is proceeded by traversing down the tree and always choosing the node whose
cluster center is closest to the query point. Each time when a node is selected for further
exploration, the other sibling nodes are inserted into a priority queue, which contains a
sequence of nodes stored in the increasing order of the distances to the query. This continues
when reaching a leaf node, followed by a sequence search for the points contained in this
node. Backtracking is then invoked starting from the top node stored in the priority
queue. During the search process, the algorithm maintains adding new candidate nodes
to the priority queue along the search path. The search process terminates early when a
given number of leaf nodes have been visited. The authors reported in their experiments
that the use of priority search along with the hierarchical clustering tree gives significant
improvements, compared to the locality sensitive hashing algorithm and the KD-tree for
many datasets.

Multiple K-medoids clustering trees: The hierarchical clustering tree has been
further extended by [Muja and Lowe, 2012] to build up multiple hierarchical clustering
trees. Single tree construction is essentially similar to that in [Muja and Lowe, 2009] except
the use of a new K-medoids clustering algorithm. Particularly, the cluster centers are
randomly selected from the input points. The clusters are then built by assigning each
input point to the closest center. To achieve fast construction of the tree, the step of
cluster center optimization by using squared error minimization is discarded. If the size of
a cluster is sufficiently small, a leaf node is constructed containing all points in this cluster.
Otherwise, an internal node is constructed associated to the cluster center. These steps are
recursively applied to the new clusters corresponding to the internal nodes. Following the
advanced work of [Silpa-Anan and Hartley, 2008] concerned with the advantage of using
multiple randomized trees for nearest neighbor search, multiple hierarchical clustering trees
are thus constructed in this work. Approximate nearest search is proceeded in parallel
from multiple hierarchical clustering trees. Single search for each tree is accomplished in
a same manner to that in [Muja and Lowe, 2009]. Once the single search is finished for
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every tree, backtracking is applied starting from the top node stored in the priority queue.
Experimental results showed that significant improvements are achieved by using parallel
search in multiple hierarchical clustering trees.

4.4 Hashing-based methods

Apart from the space-partitioning-based and clustering-based approaches, there is also
a wide range of hashing-based techniques dealing with the problem of ANN search. Such
methods are often applied to binary features employing the Hamming distance as the
similarity score of two feature vectors. The basic idea is to hash data points into buckets in
which similar points might likely be hashed in the same or adjacent buckets, and dissimilar
points are likely to be hashed into different buckets. Multiple hash tables are often used to
ensure a good chance of collision among the similar points. ANN search can be efficiently
accomplished with a sub-linear time complexity. Table 4.2 summaries the representative
methods in this domain, and the details are discussed in the following paragraphs.

Locality Sensitive Hashing (LHS): The LSH-based indexing scheme has been
known as one of the most popular methods, which can perform proximity search with a
sub-linear time for high-dimensional data [Gionis et al., 1999, Indyk and Motwani, 1998].
The key idea of LHS is to design the hash functions that the similar points may be hashed
with a high probability of collision, while the dissimilar points may likely be hashed with
different keys. Particularly, let D(p, q) € [0, 1] be a similarity function of two given points
p and ¢ in a dataset X, a LSH function family H = {h : X — U'} is defined as follows:

Prpen(h(p) = h(q)] = D(p, q) (4.4)

To design such a kind of hash functions, the authors proposed to conceptually transform
the d-dimensional feature vectors into d’-dimensional unary representations, where the L
distance is preserved (d' > d). Next, the hash functions are constructed by selecting [
subsets, {gi}ézl. Each is composed of k elements uniformly sampled with replacement
from the set R = {1,2,...,d’} (i.e., the axes in the unary space). Each subset g; can be
regarded as a hash function composing of k random lines:

gi: X = U" (4.5)

Equivalently, a hash function g; is composed of k LSH functions:
9i(p) = {ha(p), hiz(p), - . ., hir(p)} (4.6)
where h;; € H. As there are [ hash functions, [ hash tables are created to store all the

projected feature vectors. More precisely, given any data point x € X’ in d’-dimensional
space, the hash table T; (1 < i <) is constructed as follows:

T; = gi(x) = {hi(x), hia(z), ..., hip(z)} (4.7)
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For ANN search, a query g is first projected using the designed hash functions resulting
in [ indices {g1(q),92(q),...,q(q)}. Each is a k-dimensional vector. Using these indices,
the search algorithm looks up in the hash tables to obtain a set of candidate points. Next,
sequence search is applied to return the K-nearest neighbor points. This method has been
shown to provide a sub-linear complexity of computation, O(nl/ ¢), for answering the (¢, r)-
ANN query. However, the main drawback is the utilization of a huge amount of memory,
O(nl), to store [ hash tables, raising another problem known as bottleneck as argued in
[Auclair, 2009].

Kernelized LSH: [Kulis and Grauman, 2009] extended the LSH to the case, when the
similarity function is an arbitrary kernel function x: D(p,q) = x(p, q) = ¢(p)" ¢(q). Given
an input feature vector x, the problem is then to design a specific LSH function over the
feature vector ¢(x) rather than x itself, where ¢(z) is some unknown embedding function.
In their work, the LSH hash function is constructed as: h(é(z)) = sign(rf ¢(x)), where
r is a random hyperplane drawn from N(0,I) and is computed as a weighted sum of a
subset of the database feature vectors. Since the newly derived h(¢(x)) satisfies the LSH
property (i.e., Prpeglh(p) = h(q)] = D(p,q)), the new indexing scheme is thus capable of
performing similarity searching in a sub-linear time complexity, while being useful to the
cases of kernelized data. However, the problem of expensive cost of memory space is still
unsolved.

Entropy-based LSH: To reduce the hash tables used in the original LSH indexing
scheme, [Panigrahy, 2006| introduced an entropy-based LSH indexing technique. The basic
idea of the entropy-based LSH method is as follows: given a query ¢ and a parameter r of
the distance from ¢ to its nearest neighbor, the synthetic neighbors of ¢ within a distance
r are randomly generated to be hashed using the LSH functions. The obtained hash keys
are then used to access the bucket candidates in which we expect that the true nearest
neighbor of ¢ may be present. The rest is then shifted to determine a sufficient large number
of the synthetic neighbors of ¢ to ensure that the c-approrimate nearest neighbor search
(c-ANN) can be resolved under a sub-linear time. For this purpose, the author proposed
to compute the entropy I(h(p)|g, h), given a query ¢ and the LSH function h. This entropy
is then used to estimate the required search time of O(n(*°(N147/¢) " In other words, it is
required to generate n(1To(M)147/¢ gynthetic nearest neighbors of ¢, each of which is used to
access the corresponding bucket. Sequence search is applied to the data points contained
in the obtained buckets. A detailed analysis of the entropy-based LSH algorithm was
presented in [Lv et al., 2007] showing that this method is subjected to several weaknesses.
First, it is not trivial to determine a good setting for the parameter r since this value is
highly dependent on the dataset. Second, without prior knowledge about the data, the
estimation of r is not reliable. Third, the process of generating the synthetic neighbors
of ¢ by sampling the feature space from a normal distribution is inefficient and sensitive
to the parameter quantization. Finally, experiment results performed by [Lv et al., 2007]
show that the entropy-based LSH algorithm does not give noticeable search improvement,
compared to the original LSH method.

Multi-probe LSH: [Lv et al., 2007| proposed another approach, known as multi-probe
LSH, to reduce the hash tables used in the original LSH indexing scheme. This method
requires less memory space, while retaining the same search precision as in the original
LSH algorithm. The basic idea is to search multiple buckets, which probably contain the
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q probing sequence:
\wﬂm Ay, ..
8:(q)+4,
P O(
 gi(g)
> gi(Q)+As
2 9u(q)+As
> gi(a)
2 gi(q)+Ay
gi e gi e 9

Figure 4.9: Illustration of searching process in the multi-probe LSH algorithm: g¢;(q) is the
hash values of the query ¢ (green buckets), and g;(q) + A; are the adjacent buckets for
probing (reprinted from [Lv et al., 2007]).

potential nearest neighbors of the query. The rationale of looking at multiple buckets is
realized based on the fact that if a data point p is close to another data point ¢ but they
are not hashed into the same bucket, then there is a high chance that they are hashed
into two "close" buckets. Therefore, the multi-probe LSH method works by constructing a
sequence of hash perturbation vectors {A1, Ag,...,A;}. Next, let {g1(q),92(q), ..., 9:(q)}
be the indices of a given query g obtained from the original LSH algorithm, the new indices
{gi(q) + A;} are used to look up in the hash tables for obtaining the nearest neighbor can-
didates (Figure 4.9). Finally, sequence search is applied to return the K-nearest neighbor
points. In this way, the proposed method reduces the space requirement and increases the
chance of finding the true answers. Experimental results showed a significant improve-
ment in space efficiency of the multi-probe LSH method, compared with the original LSH
scheme, when working on a wide range of search precision. However, our experiments,
using the implementation provided from the open source FLANN library?, showed that
the multi-probe LSH algorithm performs poorly, compared to the randomized KD-trees
and hierarchical K-means tree, applied to the SIFT and GIST features.

Distinctive-dimension-based hashing: [Auclair, 2009] proposed a new indexing al-
gorithm for near duplicate images based on local descriptors (typically SIFT descriptor).
Once the feature vectors are computed, the value in each dimension of this vector is nor-
malized by using the mean and standard deviation in the same dimension, computed from
all the feature vectors. These values are then sorted to select the K strongest scores whose
corresponding dimensions are considered as the distinctive positions. The hashing func-
tion is then defined by selecting the first K distinctive dimensions of a given feature vector.
Given a query feature vector, its hash keys are first computed. Next, the hash keys are
used to access the appropriate buckets in the hash tables to obtain a shortlist of nearest
candidates. Sequence search is finally applied to return the approximate nearest answers.

Zhttp://www.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN
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For this approach, it can be noted that the use of distinctive dimensions is too sensitive
to discriminate the objects since very similar points could be hashed with different keys
(Figure 4.10). In addition, the task of selecting a good setting for K needs to be more
thoroughly studied.

112 13 (4| 5|6 |7 |8 1|12 |3 |4]|5|6 |7 |8
Point x* Point x?

D(x) = (4,5,2,6,8,7,1,3) DX = (5,4,2,6,8,7,1,3)

Key(x") = (4,5) Key(x’) = (5,4)

Figure 4.10: Example of the hashing algorithm in [Auclair, 2009]: Two points z! and 2>
are quite similar in a 8-dimensional space; D(z!) and D(x?) are the sorted vectors with
respect to the distinctive dimensions; Key(z!) and Key(2?) are the obtained hash keys
where K = 2 in this example; (reprinted from [Auclair, 2009]).

[Jain and Doermann, 2012] improved the work of [Auclair, 2009] in a different way.
In their work, the hash functions are defined by selecting 6 dimensions with the highest
distinctive scores and 6 dimensions with the lowest distinctive scores. In the retrieval
stage, the hash keys of a given descriptor are used to find out all the keypoints having
collision with these hash keys to form the candidate list. All these candidate keypoints
are finally filtered using a geometric consistency process. Experimental results showed
quite good performance under the context of logo retrieval. The main issue of this method
remains the same as in the [Auclair, 2009] which concerns the sensitiveness of the distinctive
dimensions.

4.5 Other methods

All the methods discusses so far can be regarded as direct-based indexing algorithms
since they directly address the problem of feature indexing by performing an offline phase
of reorganization of the data. In addition to these direct-based indexing method, indirect-
based techniques for feature indexing have also been studied in the literature. Such
techniques often address the problem of fast proximity search by improving the feature-
extraction step [Mikolajczyk and Matas, 2007, Roy et al., 2012] and/or the matching step
[Cheng et al., 1984, Mori et al., 2001]. Table 4.4 reviews some typical methods in this
domain, and the details are discussed in the following.

[Mikolajczyk and Matas, 2007 employed linear projection to improve the descriptors
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Table 4.4: Other indexing methods in R* vector space.

N N Search per- .
Method v ew G PEH £ oin features
descriptors | matching formance
. . Feature improvement by de-
Mikolajczyk . . .
correlation and dimension re-
and Matas, X +++ . . .
92007 duction, limited to Gaussian
distribution of feature variation
Coarse-to-fine matching, dedicated
Roy et al., . . o
9012 X X ++ to historical documents, sensitive to
glyphs segmentation
De-Yuan . .
Partial distance search (PDS), loop
Cheng, % e unrollin
1984 &
The use of few representative shape
. contexts to filter the matches, fea-
Mori et al., . .
X X +++ ture improvement with shapeme,
2001 ..
and vector quantization of shape
contexts

for fast tree matching. In their work, the descriptor space are transformed into a new space
by applying a whitening linear transformation (i.e., for feature de-correlation), followed by a
PCA transformation (i.e., for dimension reduction). The experiments, applied to the SIFT
descriptors, demonstrated that the nearest searching procedure based on the transformed
descriptors provides high accuracy and low running time on various tree-based indexing
structures. It is noticed that even though the proposed linear transformation can be applied
for any descriptors, it is restricted to one constraint that the variation of two descriptors
of the same scene or surface has a Gaussian distribution.

[Roy et al., 2012] presented a coarse-to-fine indexing technique for fast text retrieval
in historical documents. In their work, the input text lines are indexed at two levels as
illustrated in Figure 4.11:

e Coarse level: the text lines are segmented and described with respect to the connected
components (CCs).

e Finer level: the text lines are segmented and described with respect to the glyphs.

For each level of features, a training step is applied to generate a codebook. For each
codebook, the representative elements are learnt using an unsupervised algorithm. After
that, the text lines of the books are indexed at two levels corresponding to two codebooks.
Given a query text line, a retrieval step is first applied to the CC-based codebook and then
to the glyph-based codebook, if necessary. The approximate string matching algorithm is
finally applied to retrieve the answers. The authors demonstrated a good performance (i.e.,
high accuracy and low cost of processing time) of the proposed system for the historical
books. The advantage of this system is the avoidance of the word segmentation step which
is very sensitive to noise. However, the robustness of the primitive segmentation step (i.e.,
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CCs and glyphs) needs to be further studied as this step is sensitive to the noise and the
variation of characters. For example, the primitive segment step is sensitive to the text

239 187 YA

characters having multiple components, such as ’i’, ’a’, ’é¢’.

Coarse Level | Learnin
> clasifier Codebook 1 .

A 4

Two-level
Indexing

Text lines Feature vectors

v

Learning a

Finer Level > classifier Codebook 2

Figure 4.11: Illustration of multi-level indexing in [Roy et al., 2012].

[Cheng et al., 1984] presented a simple and efficient improvement of the matching step
for brute-force search, so-called partial distance search (PDS). Given two feature vectors u
and v in a k-dimensional space and a reference value D,..y computed as the distance from
the query point to the nearest neighbor found so far, let sum;(u,v) be the partial sum of
square differences up to the it" coordinate (1 <1 < k):

sum;(u,v) = Z(ut —uy)? (4.8)

t=1

The basic idea of the PDS technique is that the calculation of the distance between u and
v is terminated early at the dimension " (1 < i < k) if sum;(u,v) > Dys. This partial dis-
tance search has been widely used in the literature [McNames, 2001, Muja and Lowe, 2009,
Muja and Lowe, 2012] as an alternative solution for brute-force search.

[Mori et al., 2001] introduced two new matching methods for efficient retrieval of similar
shapes based on the shape context descriptor. The first method is so-called representative
shape contexts, which concerns the use of few shape contexts of a given query shape to
match against the full set of shape contexts of every database image. The rationale of
this idea is that when trying to match two sufficiently different shapes, few or none of the
shape contexts from the first shape have good correspondences on the other. Therefore, if
there is a lack of good correspondences between two shapes, we can assume that the two
shapes are different. In this method, only five representative shape contexts are randomly
computed for the query. Then, a matching step is performed using these representative
shape contexts to obtain a shortlist of candidate shapes.

The second matching method is so-called shapemes, which concerns the use of vector
quantization to construct a discrete set of the shape context labels. Its basic idea is to
quantize the shape context features into different classes using an unsupervised algorithm.
To be more specific, in the training stage, a clustering technique such as K-means, can
be used to cluster a set of shape context feature vectors into discrete groups. Each group
is then quantized by an integer number called shape context label. Once all the context
labels are derived, each shape is then represented by a global descriptor, as illustrated in
Figure 4.12, constructed by counting the frequency of each label from the shape contexts
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of the shape. Both these shape context-based matching methods have been verified on
different shape datasets, demonstrating quite good results.
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Figure 4.12: Shapeme descriptor: (a) an input image; (b) shapeme representation of (a);
(reproduced from [Mori et al., 2001]).

4.6 Discussion

Table 4.5 presents some key conclusions about all the indexing methods discussed pre-
viously. The hashing-based approaches, particularly the LHS-based indexing methods,
provided a solid basis dealing with the problem of ANN search. These methods have
been theoretically shown to perform approximate nearest neighbor search in a sub-linear
time, given a sufficient space requirement. The main drawback is the high memory cost
to construct the hash tables. Several works [Panigrahy, 2006, Lv et al., 2007| have been
investigated to deal with this weakness but the obtained results are not satisfactory. In
addition, the search precision could be a problem because the true nearest neighbors could
be hashed into many adjacent buckets, making the access to a single hash bin insufficient
to recover the true answers. Furthermore, these hashing-based methods are known to
work well on binary features, their behaviors on real feature vectors would need further
investigation.

The clustering-based approaches have shown quite good performance in a wide range
of feature types, and scaled well to the increase of the dataset size. Extensive experiments
have been performed in [Muja and Lowe, 2009, 2012| showing that these approaches are
able to give a speedup of hundreds of times, compared to the brute-force search, while
maintaining a reasonably high search precision (i.e., > 80%). They are also known to
work well on both binary features and real feature vectors. The main disadvantage is the
expensive time of the process of tree construction. However, this matter would make sense
only to several application domains where a regular update of data and tree construction
is needed.

The space-partitioning-based approaches, particularly the KD-tree-based algorithms,
seem to be the most appropriate solutions for all aspects of search precision, search
speedup, and tree construction time. Extensive experiments have been performed by
[McNames, 2001, Silpa-Anan and Hartley, 2008, Muja and Lowe, 2009, demonstrating the
same search performance as the clustering-based approaches. These experiments also reveal
that the space-partitioning- and clustering-based approaches significantly outperform the
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Table 4.5: Summary of different approaches for feature indexing in vector space

h _
Approach Pros. Cons. Search per
formance
Fast tree building, appli- | Poor ENN search, difficul-
Space cable to both real and bi- | ties of dynamic update of
e . +4+
partitioning nary features, good gener- | the tree, tree-traversing-
ality inefficient
Applicable to both real | Offline computation com-
Clustering and bigary features, good p}exity, .pO(.)I‘ ENN se.zarch, Sy
generality, memory space- | difficulties in dynamic up-
efficient date of the tree
Applicable to bi fea-
. ppacabe to mary o Memory space complex-
Hashing tures only, easy to index | . +
. ity, poor ENN search
new data points
Poor generality, domain-
Others Good retrieval perfor- | dependent, poor ENN 4y
mance search, poor support of
dynamic update

LHS-based indexing schemes. All in all, while the aforementioned approaches are shown
to give satisfactory results for approximate nearest neighbor search, their performance for
eract nearest neighbor search is not significantly improved.

Finally, some other indexing methods, which rely on improving the features and/or
matching step, might work well under some particular domains but they face several diffi-
culties. At first, most of these methods are dedicated to specific applications, where prior
knowledge about the domain is often known, and thus it is difficult to apply them to other
tasks. Furthermore, since these methods rely on feature handling, the real problem of fea-
ture indexing still remains. As a result, such methods tend to perform poorly with respect
to the increase of dataset size and data dimensionality.

In the next chapter, we attempt to bring a new contribution for feature indexing in
feature vector space. We also empirically demonstrate that the proposed indexing algo-
rithm performs much better for both the tasks of ENN and ANN search, compared to the
state-of-the-art KD-tree-based and clustering-based methods.
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Chapter 5

An efficient indexing scheme based
on linked-node m-ary tree (LM-tree)

Following the conclusions given in the previous chapter, it is highly agreed that feature
indexing is very important for a real-time image processing system. This chapter presents
a new contribution for feature indexing in high-dimensional feature vector space. The pro-
posed algorithm, called linked-node m-ary tree (LM-tree), has many favourable properties
that make it different from all the existing methods. Extensive experiments, applied to
a wide corpus set of features, have been performed to validate the proposed algorithm in
comparison with the state-of-the-art indexing schemes.

5.1 Introduction

As we argued earlier, despite the fact that a large number of indexing algorithms have
been proposed in the literature, few of them (e.g., LHS-based schemes [Lv et al., 2007],
randomized KD-trees [Silpa-Anan and Hartley, 2008], randomized K-medoids clustering
trees [Muja and Lowe, 2012|, and hierarchical K-means tree [Muja and Lowe, 2009]) have
been well validated on extensive experiments to give satisfactory performance on specific
benchmarks. Although the mentioned algorithms can produce quickly the answers of ap-
proximate nearest neighbors of a given query, their search performances are still limited in
the case where a pretty high search precision is desired (e.g., > 90%). Especially, in some
applications where exact search is required, these algorithms give little or even no better
search performance compared to the brute-force search. These arguments leave a room for
advanced indexing algorithms.
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In this chapter, an attempt of bringing a new and efficient indexing algorithm in feature
vector space is made. Particularly, a linked-node m-ary tree (LM-tree) indexing algorithm
is presented, which works really well for both exact and approximate nearest neighbor
search. The proposed indexing algorithm consists of three main parts, each of which is
described as follows. First, a new polar-space-based method of data decomposition is pre-
sented to construct the LM-tree. The new decomposition method employs randomly two
axes from a few axes having the highest variance of the underlying dataset to iteratively
partition the data into m (m > 2) roughly equally sized subsets. This spirit is in contrast
to many existing tree-based indexing algorithms, where only one axis is employed for the
same purpose. Second, a novel pruning rule is proposed to efficiently narrow down the
search space. Furthermore, the computation of the lower bounds is very simple, avoid-
ing the overhead of complicated computation as often seen in many existing approaches.
Finally, a bandwidth search method is introduced to explore the nodes of the LM-tree.
Experimental results, applied to one million 128-dimensional SIFT features and 250000
960-dimensional GIST features, show that the proposed algorithm gives a significant im-
provement of search performance, compared to many state-of-the-art indexing algorithms.
An additional application to image retrieval is also investigated to further demonstrate the
efficiency of the proposed indexing scheme.

5.2 The proposed algorithm

The proposed indexing scheme is a tree-based structure, composing of three main com-
ponents: constructing the LM-tree, doing exact nearest search with the LM-tree, and doing
approximate nearest search with the LM-trees. The detail of each component is described
in the following.

5.2.1 Construction of the LM-tree

Given a dataset X that is composed of N feature vectors in a D-dimensional space RP,
we present, in this section, an indexing structure to index the dataset X while supporting
an efficient proximity search. For a better presentation of our approach, we use the notation
p as a point in the RP feature vector space, and p; as the i** component of p (1 <i < D).
We also denote p = (pi,, pi,) as a point in a 2D space. We adopted here the conclusion
made in [Silpa-Anan and Hartley, 2008] about the use of PCA for aligning the data before
constructing the LM-tree. This approach enables us to partition the data via the narrowest
directions. In particular, the dataset X is translated to its centroid following a step of
data rotation to make the coordinate axes aligned with the principal axes. Note that no
dimension reduction is performed in this step. In fact, PCA analysis is used only to align
the data. Next, the LM-tree is constructed by recursively partitioning the dataset X into m
roughly equal-sized subsets. Next, we present the main steps of the LM-tree’s construction
process with respect to the outline in Algorithm 2:

e Sort the axes in decreasing order of variance, and choose randomly two axes, i1 and
i9, from the first L highest variance axes (L < D).
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e Project every point p € X into the plane i;cio, where c is the centroid of the set X,
and then compute the corresponding angle: ¢ = arctan(p;, — ¢i,, Diy, — Ciy)-

e Sort the angles {¢;}}"; in increasing order (n = |X|), and then divide the angles
into m disjointed sub-partitions: (0, ¢, ] U (¢4, dt,] U ... U (¢4, 360], each of which
contains roughly the same number of elements (e.g., the data points projected into
the plane i1ciz).

e Partition the set X into m subsets {X}}}" , corresponding to m angle sub-partitions
obtained in the previous step.

X2

Figure 5.1: Illustration of the iterative process of data partitioning in an 2D space: the 15¢
partitioning is applied to the dataset X, and the 2" partitioning is applied to the subset
X (the branching factor m = 6).

For each subset X}, a new node T}, is constructed and then attached to its parent node,
where we also store the following information: the split axes (i.e., i1 and i3), the split
centroid (¢;,, ¢;,), the split angles {¢, }}* ,, and the split projected points {(pfl,pﬁ)}i”:p
where the point (pfl,pg) corresponds to the split angle ¢;,. For efficient access across
these child nodes, a direct link is established between two adjacent nodes T} and Ty,
(1 < k < m), and the last one T, is linked to the first one 77. Next, we repeat this
partitioning process for each subset X that is associated with the child node T}, until the
number of data points in each node falls below a pre-defined threshold L;,q,. Figure 5.1
illustrates the first and second levels of the LM-tree construction with a branching factor
of m = 6.

It is worthwhile pointing out that each time that a partition proceeds, two axes are
employed for dividing the data. This approach is in contrast to many existing tree-based
indexing algorithms, where only one axis is employed to partition the data. Consequently,
as argued in [Silpa-Anan and Hartley, 2008]|, considering a high-dimensional feature space,
such as 128-dimensional SIFT features, the total number of axes that are involved in the
tree construction is rather limited, making any pruning rules less-efficient, and the tree
is less discriminative for later usage of searching. Naturally, the number of principal axes
involved in partitioning the data is proportional to both the search efficiency and precision.

143



5.2. THE PROPOSED ALGORITHM

Algorithm 2 LMTreeBuilding(X, m, L, Lyqz)

1:

@

Input: A dataset X € R, the branching factor (m), the number of highest variance
axes to be selected (L), and the maximum number of data points in a leaf node (Lyqz)-
Output: The LM-tree of representing all the data points.

A < sort the axes in the decreasing order of variance

t1 + random(L) {select randomly a number in [1, L]}

ty < random(L)

{make sure that ¢, # ta}

i1 < Aft1], i2 < Afta] {select two axes i1 and is}

: ¢ + compute the centroid of X

8 i+ 1, n+ |X]|

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:

{project every point p € RP into the plane i;ciy to compute o}
while 7 < n do
p < X[i] {for each point p € X}
¢; = arctan(p;, — ¢, Pi, — Ci,) {compute the corresponding angle w.r.t the selected
axes i1 and ia}
1 1+1
end while
B < sort the angles ¢; in the increasing order
A<+~ n/m
Xk < 0 {reset each subset X} to empty (1 <k <m)}
{start partitioning X into m equal-sized subsets {Xj}}

for each p € X do
¢p = arCtan(ph — Ciyy Pip — Ciz)
k+1
while £ <m do
if ¢p < B[kA] then
Xk + Xy U{p} {put p into a proper subset X}
k <— m + 1 {break the loop}
end if
k< k+1
end while
end for
{Recursively building the tree for each subset {Xj}}
k1
while £ <m do
T}, <+ construct a new node corresponding to Xp
if | X3| < Lings then
LMTreeBuilding( X, m, L, Lya.) {recursive tree building for each subset Xj}
end if
end while
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5.2.2 Exact nearest neighbor search in the LM-tree

Exact nearest neighbor search in the LM-tree is proceeded by using a branch-and-bound
algorithm. Given a query point q, we first project q into a new space by using the principal
axes, which is similar to how we processed the LM-tree construction. Next, starting from
the root, we traverse down the tree and we use the split information stored at each node
to choose the best child node for further exploration. Particularly, given an internal node
u along with the corresponding split information {i1, iz, ¢, Ciy, { D1, }1r 1, {(pfl,pﬁ)}}?zl}
which is already stored at u, we first compute an angle: ¢4, = arctan(g;, — ¢i,, @i, — Ciy)-
Next, a binary search is applied to the query angle ¢4, over the sequence {¢y, }}", to
choose the child node of u that is closest to the query q for further exploration. This
process continues until a leaf node is reached, followed by the partial distance search (PDS)
[Cheng et al., 1984, McNames, 2001] to the points contained in the leaf. Backtracking is
then invoked to explore the rest of the tree. Algorithm 3 outlines the main steps of this
process.

Algorithm 3 ENNSearch(u, q, disty)

1: Input: A pointer to a current node of the LM-tree (u), a query (q) and the current
lower bound distance (dist)

2: Output: The exact nearest neighbor of q

3: if u is a leaf node then

4: {Dpest> distpest } < apply sequence search for the points contained in u
5: else

6:  {i1,12,c1,c2, {1, } 1} < access split information stored at u

7. ¢gq, = arctan(g;, — c1, gi, — C2)

8:  sp < find a son sy of u where ¢, is contained in (¢r, ,, ¢, ]

9:  ENNSearch(sy, q, disty,) {explore s first}

10:  m < the number of sons of u

11:  Lyrq < 0 {construct an ordered list of visiting the nodes}

12: Sleft < Sk Sright < Sk, 1+ 1

13:  while i <m/2 do

14: Lorq < Lorqg Umove2le ft(sicf) {get the adjacent node in the left}
15: Lorg < Lorqg U move2right(syignt) {get the adjacent node in the right}
16: t—1+1

17 end while

18: for each node s in L,.q do

19: {distyp, q,,} < ComputeLB(s, q, disty,) {update new lower bound and query}
20: if dist,, < distpest then

21: ENNSearch(s, q,,, dist,p)

22: end if

23:  end for

24: end if

25: return p,.,; {the exact nearest neighbor of q}

Each time when we are positioned at a node u, the lower bound is computed as the
distance from the query q to the node u. If the lower bound is higher than the distance
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from q to the nearest point found so far, we can safely avoid exploring this node and
proceed with other nodes. In this section, we present a novel rule for efficiently computing
the lower bound. Our pruning rule was inspired by the work presented in the principal
axis tree (PAT) [McNames, 2001]. PAT is a generalization of the KD-tree, where the page
regions are hyper-polygons rather than hyper-rectangles, and the pruning rule is recursively
computed based on the law of cosines.

The drawbacks of the PAT’s pruning rule are the computational cost of the complexity
(i.e., O(D)) and the inefficiency when working on a high-dimensional space because only
one axis is employed at each partition. As our method of data decomposition (i.e., LM-
tree construction) is quite different from that of the KD-tree-based structures, we have
developed a significant improvement of the pruning rule used in PAT. Particularly, we
have incorporated two following major advantages for the proposed pruning rule:

e The lower bound is computed as simple as in a 2D space, regardless of how large the
dimensionality D is. Therefore, the time complexity is just O(2) instead of O(D) as
in the case of PAT.

e The magnitude of the proposed lower bound is significantly higher than that in PAT.
This enables the proposed pruning rule to work efficiently.

Figure 5.2: Ilustration of the lower bound computation.

We now come back to the description of computing the lower bound. Let u be the
node in the LM-tree at which we are positioned, let T} be one of the children of w that is
going to be searched, and let p;, = (pfl, pr) be the k" split point, which corresponds to the
child node T} (see Figure 5.2). The lower bound LB(q,7}), from q to T}, is recursively
computed from LB(q,u). The main steps of this process are as follows (i.e., Algorithm 4):

e Compute the angles: «; = Zgepy and as = Zgepgt1, where ¢ = (¢iy,qi,) and

¢ = (¢iy, Ciy)-
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e If one of two angles a; and s is smaller than 90°, then we have the following fact
due to the rule of cosines [McNames, 2001]:

d(q,z)? > d(q,h)* + d(h, z)* (5.1)

where z is any point in the region of Ty, and h = (hj,, hi,) is the projection of ¢ on
the line cp or ¢pyy1, while accounting for oy < ag or ay > ag, and d(h,x) is the
Euclidean distance between two points. Then, we apply the rule of computing the
lower bound in PAT in an 2D space as follows:

LB?(q,T}) + LB%*(q,u) + d(q, h)? (5.2)

Next, we treat the point h = (q1,492,...,hiy,-..,hiy,...,qp-1,qp) in place of q by
the means of lower bound computation for the descendant of T}.

e If both angles, a; and aw, are higher than 90° (e.g., the point ¢o in Figure 5.2), we
have a more restricted rule as follows:

A(g,2)? > d(g, 0)* + d(c, 1)’ (5.3)
Therefore, the lower bound is easily computed as:
LB*(q,Ty) + LB*(q,u) +d(q,c) (5.4)

Again, we treat the point ¢ = (q1,¢2,...,¢i,,---,Ciy,---,qD—1,9D) in place of q by
the means of lower bound computation for the descendant of T}..

As the lower bound LB(q,T}) is recursively computed from LB(q,u), an initial value
must be set for the lower bound at the root node. Obviously, we set LB(q,root) = 0. It
is also noted that when the point q is fully contained in the region of Ty, no computation
of the lower bound is required. Therefore: LB(q, 1)) < LB(q,u).

5.2.3 Approximate nearest neighbor search in the LM-tree

Approximate nearest neighbor search is proceeded by constructing multiple randomized
LM-trees to account for different viewpoints of the data. To achieve the optimized utiliza-
tion of memory space, the data points are stored in a common buffer, while the leaf nodes
of the trees contain the indexes to these actual data points. The idea of using multiple ran-
domized trees for ANN search was originally presented in [Silpa-Anan and Hartley, 2008,
where the authors proposed to construct multiple randomized KD-trees. This technique
was then incorporated with the priority search and successfully used in many other tree-
based structures [Muja and Lowe, 2009], [Muja and Lowe, 2012|. Although the priority
search was shown to give better search performance, it is certainly subjected to a high
computational cost because the process of maintaining a priority queue during the online
search is rather expensive.

Here, we exploit the advantages of using multiple randomized LM-trees but without
using the priority queue. The basic idea is to restrict the search space to the branches
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Algorithm 4 ComputeLB(u, q, disty)
1: Input: A pointer to a node of the LM-tree (u), a query (q) and the current lower
bound distance (dist)

2: Output: New lower bound (dist,;;) and new query point (q,,)

3: py < get the parent node of u

4: {i1,12,c1,ca} < access split information stored at p,,

5. Qumin < min{aq, as} {see explanation of ay and « in the text}

6: q, < q

7. if aynin < 90° then

8:  h « projection of q on the split axis {see explanation in the text}

9:  quli1] < hi, {update the new query at the coordinates iy and iz}

10:  qyia] = hi

11: distyy < disty, + (¢, — hiy)? + (g, — hiy)? {update the new lower bound distance}
12: else

13:  q,[i1] ¢, {update the new query based on the centroid}

4 qpliz] < ¢y

15:  distpy < disty + (g, — ¢iy)? + (¢, — ¢i,)? {update the new lower bound distance}
16: end if

17: return {dist,p, q, }

that are not very far from the considering path. In this way, we introduce a specific search
procedure, so-called bandwidth search, which proceeds by setting a search bandwidth to
every intermediate node of the ongoing path. Particularly, let P = {uj,ua,...,u,} be a
considering path obtained by traversing down a single LM-tree, where u is the root node
and u, is the current node of the path. The proposed bandwidth search indicates that
for each intermediate node u; of P (1 < i < r), every sibling node of u; at a distance of
b+ 1 nodes (1 < b < m/2) on both sides from u; does not need to be searched. The value
b is called search bandwidth. Taking one example as shown in Figure 5.3, where Xg is
an intermediate node on the considering path P, then only X; and X35 are candidates for
further inspection given a search bandwidth of b = 1.

There is a notable point that when the projected query ¢ is too close to the projected
centroid ¢, all of the sibling nodes of u; should be inspected as in the case of an ENN
search. Particularly, this scenario occurs at a certain node wu; if d(q,¢) < €Dypeq, Where
Dyyeq is the median value of the distances between ¢ and all of the projected data points
that are associated with u;, and ¢ is a tolerance radius parameter. In addition, in order
to obtain a varying range of the search precision, we would need a parameter E,,,, for
the maximum data points to be searched on a single LM-tree. Algorithm 5 outlines the
flowchart of our bandwidth search process.

As we are designing an efficient solution dedicated to an ANN search, it would make
sense to use an approximate pruning rule rather than an exact rule. Particularly, we
have used only formula (5.4) as an approximate pruning rule. This adaption offers two
favourable features. First, it reduces much of the computational cost. Recall that rule
(5.4) requires the computation of d(g,c) in a 2D space, where point ¢ has been already
computed during the offline tree construction. The computation of this rule is thus very
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Figure 5.3: Illustration of our bandwidth search with b = 1: Xg is an intermediate node
of the considering path, and its adjacent sibling nodes, X; and X5, will also be searched;
if q is too close to the centroid (e.g., inside the circle for the case of Xg), then all of the
sibling nodes of Xg will be searched.

efficient. Second, it also ensures that a larger fraction of nodes will be inspected but few of
them would be actually searched after checking the lower bound. In this way, it increases
the chance of reaching the true nodes that are closest to the query. More generally, we
have adapted formula (5.4) as follows:

LB*(q,Ty) + - (LB*(q,u) + d(g,¢)*) (5.5)

where £ > 1 is the pruning factor that controls the rate of pruning the branches in the
trees. This factor can be adaptively estimated during the tree construction given a specific
precision and a specific dataset. However, we have set this value as k = 2.5 and we show,
in our experiments, that it is possible to achieve satisfactory search performance on many
datasets. Algorithm 6 sketches the basic steps of computing the approximate pruning rule.

5.3 Experimental results

We evaluated our system versus several representative fast proximity search systems in
the literature, including randomized KD-trees (RKD-trees) [Silpa-Anan and Hartley, 2008]
that use the priority search implementation in [Muja and Lowe, 2009|, hierarchical K-
means tree (K-means tree) [Muja and Lowe, 2009], randomized K-medoids clustering trees
(RC-trees) [Muja and Lowe, 2012], and the multi-probe LSH algorithm [Lv et al., 2007].
These indexing systems were well-implemented and widely used in the literature thanks to
the open source FLANN library!. The source code of our system is also publicly available
at this address®. Note that the partial distance search was implemented in these systems

"http://www.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN
Zhttps:/ /sites.google.com /site/ptalmtree/
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Algorithm 5 ANNSearch(u, q, disty, Fmag, €, &, b)

1:

N DN NN NN DN = = = e = e e e e e

27:
28:
29:
30:
31:

Input: A pointer to a current node of the LM-tree (u), a query (q), the current lower
bound distance (dist), and the 4 parameters Fyqz, €, £, and b.
Output: The approximate nearest neighbor of q
if v is a leaf node then
{Prests distpest } < apply sequence search for the points contained in u
else
{i1,12, c1, 2, Died; {®1, 11 } < access split information stored at u
¢q, = arctan(g;, — c1, gi, — C2)
s < find a son si of u where ¢, is contained in (¢r, ,, ¢, ]
ANNSearch(sg, q, distip, Fmag, €, &, b) {explore s, first}
m <— the number of sons of u
dist < (g, — c1)* + (¢, — c2)
mpg < b {compute the search bandwidth}
if dist < (¢Dyeq)® then
Mmpd < m/ 2
end if
Lorg < 0 {construct an ordered list of visiting the nodes}
Sleft < Sk, Sright < Sk
141
while ¢ < Mpd do
Lorq < Lorqg U move2le ft(sicf) {get the adjacent node in the left}
Lord < Lorq Umove2right(syignt) {get the adjacent node in the right}
t—1+1
end while
for each node s in L,y do
{distyp, q,,} < ComputeLB ANN(s, q, distp, k) {compute the lower bound}
if dist,, < distpest then
ANNSearch(s, q,,, dist, Emaz, € K, b)
end if
end for
end if
return p,.., {the approximate nearest neighbor of q}

2

Algorithm 6 ComputeLB ANN(u, q, distyp, k)

1:

Input: A pointer to a node of the LM-tree (u), a query (q), the current lower bound
distance (disty,) and the pruning factor (k)

Output: New (approximate) lower bound (dist,;;) and new query point (q,,)

Py ¢ get the parent node of u

{i1,i2,c1,co} + access split information stored at p,

a, <—4qg

q,[i1] < ¢, {update the new query at the coordinates i; and iz}

q, [12] < Cip

distyp < disty+ k- (g, — ciy)? + (¢i, — ¢i,)?) {update the new lower bound distance}
return {dist,p, q,}
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in order to improve the efficiency of the sequence search at the leaf nodes. Two datasets,
ANN_ SIFTIM and ANN_ GISTIM [Jégou et al., 2011|, were used for all of the experi-
ments. The ANN SIFTIM dataset contains a database of one million 128-dimensional
SIFT features and a test set of 5000 SIFT features, while the ANN GIST1M dataset is
composed of a database of one million 960-dimensional GIST features and a test set of
1000 GIST features. Because the dimensionality of the GIST feature is very high and our
computer configuration is limited (i.e., Windows XP, 2.4G RAM), we were not able to load
the full ANN GISTIM dataset into memory. Consequently, we have used 250000 GIST
features for search evaluation. Following the convention of the evaluation protocol used
in the literature [Beis and Lowe, 1997|, [Muja and Lowe, 2009], [Muja and Lowe, 2012|, we
computed the search precision and search time as the average measures obtained by running
1000 queries taken from the test sets of the two datasets. To make the results independent
on the machine and software configuration, the speedup factor is computed relative to the
brute-force search. The details of our experiments are presented in this section.

5.3.1 ENN search evaluation

For ENN search, we use a single LM-tree and set the parameters that are involved in
the LM-tree as follows: L4, = 10, L = 2, and m € {6, 7} with respect to the GIST and
SIFT datasets (see section 5.2.1). By setting L = 2, we choose exactly the two highest
variance axes at each level of the tree for data partitioning. We compared the performance
of the ENN search of the following systems: the proposed LM-tree, the KD-tree, and the
hierarchical K-means tree. Figure 5.4(a) shows the speedup over the brute-force search
for the three systems, when applied to the SIFT datasets with different sizes. We can
note that the LM-tree outperforms the other two systems on all of the tests. Figure 5.4(b)
presents the search performance for the three systems for the GIST features. The proposed
LM-tree again outperforms the others and even performs far better than the SIFT features.
Taking the test where # Points = 150000 on Figure 5.4(b), for example, the LM-tree gives
a speedup of 17.2, the KD-tree gives a speedup of 3.53, and the K-means tree gives a
speedup of 1.42 over the brute-force search. These results confirm the efficiency of the
LM-tree for the ENN search relative to the two baseline systems.

5.3.2 ANN search evaluation

For the ANN search, we adopted here the benefit of using multiple randomized trees,
which were successfully used in the previous works of [Silpa-Anan and Hartley, 2008] and
[Muja and Lowe, 2012|. Hence, we set the required parameters as follows: Lyjq, = 10,
L=8,b=1,and m € {6,7}. By setting L = 8, we choose randomly two axes from the
eight highest variance axes at each level of the tree for data partitioning. In addition, the
parameter b = 1 indicates that our bandwidth search process visits three adjacent nodes
(including the node in question) at each level of the LM-tree. Four systems participated
in this evaluation, including the proposed LM-trees, RKD-trees, RC-trees, and K-means
tree. Following the conclusion made in [Muja and Lowe, 2012| about the optimal number
of parallel trees for ANN search, we used 8 parallel trees in the first three systems as the
search precision is expected to be high (> 70%) in our experiments. It is worth explaining
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Figure 5.4: Exact search performance for the SIFT (a) and GIST (b) features.

a bit the meaning of the search precision in our context. For 1-NN ANN search, the search
precision is computed as the ratio of the number of exact answers to the number of queries.
In our experiments, we performed 1000 queries for each test and if one system achieves a
precision of 90% implying that it produces 900 exact answers out of 1000 queries.

It is also noted that we used a single tree for the K-means tree indexing algorithm
because it was shown in [Muja and Lowe, 2009] that the use of multiple K-means trees
does not give better search performance. For all of the systems, the parameters Ey,,, and
e (i.e., the LM-tree) are varied to obtain a wide range of search precision.

Approximate search performance for 1 million SIFT features Approximate search performance for 200K GIST features
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Figure 5.5: Approximate search performance for the SIFT (a) and GIST (b) features.

Figure 5.5(a) shows the search speedup versus the search precision of the four systems
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for 1 million SIFT features. As can be seen, the proposed LM-trees algorithm gives sig-
nificantly better search performance everywhere compared with the other systems. When
considering the search precision of 95%, for example, the speedups over a brute-force search
of the LM-trees, RKD-trees, RC-trees, and K-means tree are 167.7, 108.4, 122.4, and 114.5,
respectively. To make it comparable with the multi-probe LSH indexing algorithm, we con-
verted the real SIFT features to the binary vectors and tried several parameter settings
(i.e., the number of hash tables, the number of multi-probe levels, and the length of the
hash key) to obtain the best search performance. However, the result obtained on one
million SIFT vectors is rather limited. Taking the search precision of 74.7%, for example,
the speedup over a brute-force search (using Hamming distance) is only 1.5.

Figure 5.5(b) shows the search performance of all of the systems for 200000 GIST fea-
tures. Again, the LM-trees algorithm clearly outperforms the others and tends to perform
much better than the SIFT features. The RC-trees algorithm also works reasonably well,
while the RKD-trees and K-means tree work poorly for this dataset. Considering the
search precision of 90%, for example, the speedups over a brute-force search of the LM-
trees, RKD-trees, RC-trees, and K-means tree are 113.5, 15.0, 45.2, and 21.2, respectively.

Approximate search performance for SIFT datasets with different sizes Approximate search performance for GIST datasets with different sizes
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Figure 5.6: ANN search performance as a function of the dataset size: (a) the SIFT datasets
(search precision = 96%); (b) the GIST datasets (search precision = 95%).

In Figure 5.6, we present the ANN search performance of the four systems as a function
of the dataset size. For this purpose, the search precision is set to a rather high degree,
especially at 96% and 95% for the SIFT and GIST features, respectively. This time, the
LM-trees algorithm still gives a substantially better search performance than the others
and tends to perform quite well, considering the increase in the dataset size. For the
SIFT features, the RC-trees algorithm works reasonably well, except for the point where
# Points = 800K, at which its search performance is noticeably degraded. It is also noted
that the speedups of the RKD-trees and K-means tree for the GIST features are quite low,
even lower than the speedup of the LM-tree for the ENN search (see Figure 5.4(b)).

Three crucial factors explain these outstanding results of the LM-trees. First, the

153



5.3. EXPERIMENTAL RESULTS

use of the two highest variance axes for data partitioning in the LM-tree gives a more
discriminative representation of the data in comparison to the common use of the sole
highest variance axis as in the literature. Second, by using the approximate pruning rule,
a larger fraction of nodes will be inspected, but many of them would be eliminated after
checking the lower bound. In this way, the number of data points that will be actually
searched, is retained under the pre-defined threshold FE,,q., while covering a larger number
of inspected nodes, and thus increasing the chance of reaching the true nodes that are
closest to the query. Finally, the use of bandwidth search gives much benefit in terms
of the computational cost, compared to the priority search that is used in the baseline
indexing systems.

The last experiment is presented on Figure 5.7 to evaluate the distance error (i.e., error
ratio) of the approzimate answers to the exact ones. By approximate nearest neighbor
search, it means that not all the answers are the exact ones. More precisely, the quality
of approximate nearest neighbor search is evaluated by two metrics: the search precision
and the distance error ratio. Taking the search precision of 95% provided by one indexing
system, for instance, implies that the system produces 950 exact answers out of 1000 queries
(e.g., considering a test of 1000 queries). It also tells us that there are 50 answers which are
not the exact ones but the approrimate nearest neighbors. The quality of these approximate
answers are evaluated by the distance error ratio to the exact ones. [Gionis et al., 1999|
defined the distance error ratio as follows:

d,LSt pl’ q’L
dister, = g 5.
'8 Q dzst pl y i) (56)

where p; is the approximate answer of the query g;, whereas p; is the exact nearest
neighbor of ¢;, and dist(, ) is the Euclidean distance between two points.

Figure 5.7 shows the distance error ratio with respect to the increase of search precision
of all the systems for the SIFT and GIST features. For both cases, although the proposed
system does not always perform best, the distance error ration is quite low, especially for
the GIST features. On average, the distance error ratios of the proposed system are 1.0414
and 1.0193 for the SIFT and GIST features, respectively. In other words, the approximate
answers given by the proposed system are, on average, located on the hyper-spheres with
the radii of 4.1% and 1.9% higher than that of the exact nearest neighbors for the SIFT
and GIST features, respectively.

5.3.3 Parameter tuning

In this section, we study the effects of the parameters that are involved in the LM-
tree on the search performance. Two types of parameters are concerned in the LM-tree:
static and dynamic parameters. The static parameters are those that are involved in the
offline phase of building the LM-tree, including the maximum number of data points at a
leaf node (Lyqz), the number of axes having the highest variance (L), and the branching
factor (m). The dynamic parameters are used in the online phase of searching, including
the search bandwidth (b), the maximum number of data points to be searched in a single
LM-tree (Epqz), the pruning factor (k = 2.5), and the tolerance radius e. For the static
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Figure 5.7: Evaluation of distance error ratio for ANN search applied to SIFT (a) and
GIST (b) features.

parameters, our investigation, obtained on the experiments performed so far, has shown
that they produce a negligible effect on the search performance provided an appropriate
setting of the dynamic parameters. Specifically, it was found that the following settings for
the static parameters often lead to relatively good search performance: L,q. = 10, L = 8,
and m € {6,7}. As a rule of thumb, the branching factor m should be high for a large-
scale dataset and vice versa. The dynamic parameters (Eypqz, €, b) are used to achieve a
given specific search precision. They are thus treated as precision-driven parameters. This
implies that given a specific precision P (0% < P < 100%), we can design a method to
determine automatically the optimized settings for these parameters to achieve the best
search time. The basic idea is that given a specific setting of b and €, the parameter
FEpaz is estimated by using a binary search. This approach enables the method to work
very efficiently. In our case, we have set the parameter b to 1 and designed the following
procedure to estimate the optimized setting for F,,.. and e:

e Step 1: Sample the parameter € into discrete values: {eg,eq+ A, ..., eg+IA}. In our
implementation, we set: ¢g =0, A = 0.04, [ = 20.

e Step 2: For each value ¢; = ¢g +iA (0 < i <1):

— Step 2(a): Estimate an initial value for E,,,; by running the approximate search
procedure without consideration of the parameter F,,.,. In this way, the search
procedure terminates early with respect to the current settings of ¢; and b.
Assume Q be the number of searched points during this process.

— Step 2(b): Compute the precision P; and speedup S; by using the groundtruth
information. If P; < P, then proceed with a new value of ¢4 and go to Step
2(a). Otherwise, go to Step 2(c).
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— Step 2(c): If P, > P, we apply a binary search to find the optimized value of
Epqz in the range of [0, Q]. Particularly, we first set Ejqp = @/2 and run the
approximate search procedure. Next, the search range is updated as either [0, %]
or [%,Q] taking into account that P; > P or P; < P. This process continues
until the search range is unit-length.

— Step 2(d): Update the best speedup, the parameter ¢;, and the optimized pa-
rameter Fy,q, obtained from Step 2(c). Proceed with a new value of ¢;4; and
go to Step 2(a) to find the better solution.

e Step 3: Return the parameters €¢; and Fypq., corresponding to the best speedup found
so far.

The rationale of setting the parameter b to 1 was inspired from the work of multi-probe
LSH [Lv et al., 2007]. When using the two highest variance axes for partitioning the data,
two close points can be divided into two adjacent bins. It is thus necessary to have a look
at the adjacent bins while exploring the tree. Our experiments have revealed that the
parameter b = 1 is often a good setting for obtaining satisfactory search performance.

Affect of pruning factor (K) on search performance
450 ‘ T T T ‘ ‘

400 — % — GIST (P=95%)| |

- B - GIST (P=90%)
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—%— SIFT (P=95%)
—&— SIFT (P=90%) | |
—&A— SIFT (P=80%)

350

300

Speedup over brute-force search

1 1.5 2 2.5 3 3.5 4 4.5 5
Pruning Factor

Figure 5.8: Search performance as a function of the pruning factor: precision is set to 95%,
90%, and 80% for both the SIFT and GIST features.

Figure 5.8 shows the search performance as a function of the pruning factor . In this
experiment, we study the effect of x for a wide range of search precision. For this purpose,
the precision is set to 95%, 90%, and 80% for both the SIFT and GIST features. It can
be seen that for both types of features, the speedup increases strongly with respect to the
increase in K to a certain extent. For example, taking the curve that corresponds to the
precision P = 90% for the SIFT features, the speedup starts to decrease for k > 3.5. Figure
5.8 also reveals that when increasing x, we achieve much of the speedup for low precision
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(P = 80%) compared with that for higher precision (P > 90%). This relationship is re-
ferred to as the problem of over-pruning because a large number of branches has been elimi-
nated as k increases. Hence, the search process would miss some true answers. Fortunately,
this matter can be resolved by using a cross-validation process [Muja and Lowe, 2009| dur-
ing the tree construction to adaptively select an appropriate value for x, when provided a
specific precision and dataset. However, we have not employed this approach here, and we
set k = 2.5 for all of our experiments.

5.4 Application to image retrieval

In this section, an application to image retrieval is investigated using the proposed
LM-tree indexing scheme. We carry out here a classical approach composing of three
main steps: feature extraction, indexing, and retrieval. For this purpose, we selected a
wide corpus set? of historical books containing ornamental graphics. The dataset, called
"Lettrine", is composed of 23062 isolated graphical images that were extracted from old
documents. Some examples of the drop caps in this dataset are shown in Figure 5.9.

Figure 5.9: Several example images of ornamental drop caps in the dataset.

Our challenge here is to prove that the proposed LM-tree indexing algorithm can be
used in the context of a CBIR system. Hence, for the first step of feature extraction, we
selected the GIST feature as it is a commonly used descriptor in the literature for image
retrieval [Oliva and Torralba, 2001]. The GIST descriptor comprises a set of perceptual
properties that represent the dominant spatial structure of a scene such as naturalness,
openness, roughness, expansion, and ruggedness. The GIST descriptor has been widely
used in the literature [Kulis and Grauman, 2009, Jégou et al., 2011] on image retrieval,
scene recognition and classification because of its distinctiveness and efficiency. We used
the original implementation of the 512-dimensional GIST descriptor that was provided by
the authors at this address?.

In order to use the GIST descriptor for image matching and retrieval, it is necessary
to normalize the image size. This action was already addressed in the GIST descriptor’s
implementation by centering, cropping and resizing the image such that the normalized
image preserves the size ratio of the original image. In our experiments, the common size

3http://www.bvh.univ-tours.fr/
“http://people.csail.mit.edu/torralba/code/spatialenvelope/
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for normalization is set to 256 x 256. Among the 23062 ornamental graphics, 500 images
were included in the query set, and the remaining served as the database set. Next, the
GIST features are computed once for all of the images in an offline phase.

In the second step, all of the database GIST features are indexed by using our LM-tree
algorithm. As this application is dedicated to the image retrieval domain, the main goal
here is to illustrate that the system can produce sufficiently relevant results with a critical
constraint of fast processing time. Therefore, it makes sense to apply an ANN indexing
algorithm rather than the ENN method. Here, we keep the same parameter settings for
the LM-trees as before. In other words, we used 8 parallel LM-trees, and each of which is
associated with the same parameter configuration, as follows: L;qe = 10, L = 8, b =1,
and m = 6.

For performance evaluation, it would be interesting to use standard evaluation metrics
such as precision and recall. However, because there is no groundtruth information that is
included in this dataset, the use of precision and recall is not possible. Instead, we used
an alternative metric to quantify the retrieval performance of our system. This metric was
introduced in [Kulis and Grauman, 2009] for the same purpose as ours. Its basic idea is
to measure how well a retrieval system can approximate an ideal linear scan (i.e., a brute-
force search). Specifically, we computed the fraction of the common answers between our
retrieval system and the ideal linear scan to the number of answers of our system. Figure
5.10 (a) quantitatively shows how well our retrieval system approaches the ideal linear
scan. These quantitative results are computed using the top 1, 5, 10, 15, 20, and 25 ranked
nearest neighbors (NNs) of our system. To have a more detailed analysis of the results, we
can derive hereafter several key remarks:

e For the top 5-NNs of the LM-trees, 93.1% of the time, the retrieved answers are
covered by that of the top 15-NNs of the ideal linear scan.

e For the top 15-NNs of the LM-trees, 80.6% of the time, the retrieved answers are
covered by that of the top 30-NNs of the ideal linear scan.

e For the top 25-NNs of the LM-trees, 74.4% of the time, the retrieved answers are
covered by that of the top 50-NNs of the ideal linear scan.

The results presented in Figure 5.10 (a) quantitatively show the quality of our retrieval
system, which can be regarded as a function of search precision over recall. Furthermore,
we want to measure how fast the system is with respect to these results. For this purpose,
Figure 5.10 (b) shows the speedup of our system relative to the ideal linear scan. In this
test, both of the systems are evaluated by using the same parameter k for the number of
nearest neighbors. For more detail, we extract hereafter several key results of our system:

e The 5-NNs LM-trees achieved a speedup factor of 113.8 relative to the 5-NNs ideal
linear scan, given a precision of 88.1%.

e The 15-NNs LM-trees achieved a speedup factor of 92.8 relative to the 15-NNs ideal
linear scan, given a precision of 80.1%.

e The 50-NNs LM-trees achieved a speedup factor of 78.2 relative to the 50-NNs ideal
linear scan, given a precision of 67.1%.
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Figure 5.10: Search quality of the k-NN LM-trees (a), and search quality versus speedup
of the k-NN LM-trees (b).

With regard to the results presented in Figure 5.10 (b), we report in Table 5.1 the
absolute search time (ms) and the fraction of searched points for the case of the 5-NNs
LM-trees, which were averaged over the 500 queries. Taking a search precision of 73.9%
for example, our system must explore 0.78% of the whole database and takes only 0.3 (ms)
to return the top 5-NN answers.

Table 5.1: Report of search time and fraction of searched points for the 5-NN LM-trees.
Search precision (%)

59.9 [ 61.8 [ 68.1 [ 73.9 [ 78.6 | 88.1 | 96.5

Search fraction (%) 0.27 1 0.32 ] 0.52 | 0.78 | 1.17 | 2.45 | 6.21

Mean search time (ms) | 0.24 | 0.25 | 0.26 | 0.30 | 0.36 | 0.38 | 0.60

Performance

Figure 5.11 shows some examples of our retrieval results in comparison with the ideal
linear scan. These retrieval results are obtained using the 5-NN LM-trees that are associ-
ated with the precision of 78.6% (see Table 5.1).

5.5 Discussion

In this chapter, a novel and efficient indexing algorithm in feature vector space has
been presented. Three main features are attributed to the proposed LM-tree. First, a
new polar-space-based method of data decomposition has been presented to construct
the LM-tree. This new decomposition method differs from the existing methods in the
literature in that the two highest variance axes of the underlying dataset are employed
to iteratively partition the data. Second, a novel pruning rule is proposed to quickly
eliminate the search paths that are unlikely to contain good candidates of the nearest

159



5.5. DISCUSSION
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Figure 5.11: Few examples of the retrieval results: for each query in the left, the top ranked
5-NNs are showed for the ideal linear scan (the top row) and our LM-trees (the bottom
row).

neighbors. Furthermore, the lower bounds are easily computed, as if the data were in 2D
space, regardless of how high the dimensionality is. Finally, a bandwidth search method is
presented to explore the nodes of the LM-tree. Its basic idea is inspired by the fact that
only a limited number of relevant bins are searched to avoid the overhead of complexity.
The proposed LM-tree has been validated on one million SIFT features and 250000 GIST
features, demonstrating that it works very well for both ENN and ANN search, compared
to the state-of-the-art indexing algorithms, including randomized KD-trees, hierarchical
K-means tree, randomized clustering trees, and the multi-probe LHS scheme.

For further improvements to this work, more experiments on binary features (e.g.,
BRIEF [Calonder et al., 2010], ORB [Rublee et al., 2011]) would be interesting to evaluate
the proposed LM-tree. Dynamic insertion and deletion of the data points in the LM-tree
would be also investigated to make the system adaptive to dynamic changes in the data.
Automatic parameter tuning using cross-validation approach could be also integrated to
make the system more robust and well-fitting to specific datasets. The use of many high
variance axes (e.g., more than two) could be considered to study the new behaviors of the
system. In addition to these open works, the study of designing an indexing system, which
can work on the data stored on an external disk, will be investigated to deal with extremely
large datasets in which they are often not fully loaded into the main memory.
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Conclusions

In this chapter, we summarize the main contributions of this dissertation for junction
detection in line-drawing images and feature indexing in high-dimensional feature vector
space. The favourable features and the shortcomings of the two contributions are carefully
discussed. Possible lines of future research for each of these contributions are also given.

Beginning with the chapter 1, we have provided the description of the state-of-the-art
methods for junction detection. The merits and limitations of each method are discussed
in detail. The connections among these methods are studied to establish potential links to
our contribution on junction detection.

Based on the discussion of the existing approaches for junction detection, a novel ap-
proach is presented in chapter 2 for robust and accurate junction detection and character-
ization in line-drawing images. The proposed approach has been evaluated through exten-
sive experiments in which we achieved better results compared to other baseline methods.
Besides, the computation complexity of the proposed system has been analyzed from the
theoretical point of view, showing that its complexity is essentially linear to the image size.
An application of symbol localization has been also investigated, confirming very good
results in terms of both detection rate and efficiency. In short, the proposed approach has
the following major features:

e Junction distortion avoidance: The problem of junction distortion is avoided by com-
pletely removing all distorted zones from foreground. For this purpose, an efficient
algorithm is presented to detect and remove crossing regions. In this way, the pro-
posed approach works on the remaining line segments only.

e Accurate junction detection: A new algorithm based on linear least square technique
is presented to correctly determine local scales (or regions of support) of every median
point. Junction localization is achieved by a novel optimization algorithm which an-
alyzes the local structure relations among the characterized line segments to produce
precise junction detection.
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e Multiple junction detection: The proposed approach can deal with the problem of
multiple detection of junction points for a given complicated crossing zone. This was
accomplished by iteratively clustering the incident branches into different groups,
each of which forms an optimized location of the junction.

e Efficiency: Computation complexity for the whole process of junction detection is
O(MN + k%S) where M, N are the dimensions of input image, S is the number of
median points, and k is a small constant value. In addition, the detected junctions are
characterized, classified, and matched in very efficient way that makes them suitable
to deal with high complexity problems such as image indexing, symbol recognition,
and symbol spotting.

e Robustness: The junction detector is stable to common transformations such as
rotation, scaling, translation, and can resist a satisfactory level of degradation /noise.
Furthermore, the proposed approach requires no prior knowledge about document
content and is independent on any vectorization systems.

e Usefulness: The detected junctions can be used to address different applications of
symbol localization and spotting, vectorization, and engineering document retrieval.
As the junction detector is robust and accurate, the information of the detected junc-
tions can be used to support different tasks including junction matching, geometry
consistency checking, and primitive detection. Such favourable features are highly
expected to address the time-critical applications.

In addition to these positive characteristics, we are also aware of several shortcomings
of the proposed approach. First, as this approach is dedicated to working with line-like
primitives, its performance would be degraded if applying to filled-shape objects, such as
logo images. The reason is due to the fact that median lines are not an appropriate means
for representing these filled shapes. For the filled shapes, as the local line-thickness at each
crossing zone is often high, a large part of median lines is eliminated around the crossing
zones. For this reason, we have not enough information to reconstruct the junctions.
Second, although we have improved the stage of region of support determination to make
it more robust to the digitalization effect, the step of dominant point detection is still
dependent on the threshold of deciding a low curvature point. Furthermore, the junction
optimization process could lead to some difficulties in correctly interpreting the junction
position as originally produced by craftsmen. However, although this point is valid for
some specific domains of exact line-drawing representation, such as vectorization, we are
interested in detecting local features that would be useful to addressing the problem of
large-scale document indexing and retrieval. In this sense, a low rate of false positives in the
final results is not problematic. To promote the evaluation of this work, the source code and
demonstration of the symbol localization application are publicly available at this address®.
Furthermore, several potential directions of research have planned for improvement of this
work:

e It can be noted that the junction optimization algorithm is dependent on the detec-
tion of junction candidates. Any false detections of the junction candidates could

Shttps:/ /sites.google.com /site/ourjunctiondemo/

162



CONCLUSIONS

result in the false acceptance of the final junctions. A potential solution for this
matter would probably rely on the context information. By incorporating some null
hypothesis Hy of the underlying context information, the powerful a contrario detec-
tion theory [Desolneux et al., 2000] can be applied to justify the meaningfulness of
a given detected junction. That means, a junction is meaningful if it is unlikely to
occur at random under the hypothesis Hy. For instance, a successful application of
this theory for detecting the junctions in natural images was presented in [Xia, 2011].

e To this end, the evaluation protocol applied to the junction detectors is detector-
dependent. Different evaluation metrics and protocols shall be used to study the
behavior of the proposed junction detector. It would be also interesting to evaluate
the junction detectors using some datasets provided with semantic groundtruth such
as the BSDS benchmark presented in [Maire et al., 2008].

e Junction characterization has been addressed in our work as a natural benefit of the
junction optimization process. It has several favourable properties of simplicity, dis-
tinctiveness, scale invariant, and low dimensionality. However, this characterization
is not shift invariant (i.e., it depends on the selection of the start junction arm).
Therefore, further works to address these points would make the whole system com-
pletely robust. Besides, the idea of employing an off-the-shelf local descriptor in the
CV field would be also interesting to characterize the junctions.

Regarding the second contribution of this dissertation about feature indexing, we first
provided, in chapter 4, a deep review of the state-of-the-art methods for feature indexing
in high-dimensional feature vector space. The main ideas, favourable features, and short-
comings of each method are thoroughly studied. We also give our subjection remarks for
these methods and highlight the need of an advanced contribution for efficiently indexing
the feature vectors.

Following the conclusions derived from the discussion of the existing indexing methods,
a new contribution for feature indexing in high-dimensional feature vector space has been
presented in chapter 5. The proposed algorithm, called linked-node m-ary tree (LM-tree),
has many desirable features that make it different from all the existing methods. Followings
are three main advancements attributed to the proposed LM-tree.

e A new polar-space-based method for data decomposition has been presented to con-
struct the LM-tree. This new decomposition method differs from the existing meth-
ods in that two axes are randomly selected from a few axes that have the highest
variance of the underlying dataset to iteratively partition the data.

e An efficient pruning rule is proposed to eliminate the search paths that are unlikely
to contain the true answers. Furthermore, the lower bounds are easily computed, as
if the data were in 2D space, regardless of how high the dimensionality is.

e A bandwidth search method is introduced to explore the nodes of the LM-tree. Its
basic idea is inspired by the fact that searching at multiple adjacent bins gives a good
chance of reaching the true answers, while reducing the computational overhead. Like
this, it makes unnecessary the expensive computations of finding the best bins that
is a matter of the priority search technique [Beis and Lowe, 1997].
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The proposed LM-tree has been validated on a wide corpus dataset composing of one mil-
lion SIFT features and 250000 GIST features, demonstrating that the proposed algorithm
gives a significant improvement of search performance, compared to the state-of-the-art
indexing algorithms, including randomized KD-trees, hierarchical K-means tree, random-
ized clustering trees, and multi-probe LHS scheme. To further confirm the efficiency the
proposed indexing algorithm, an additional application to image retrieval was developed
using a wide corpus set of historical books containing ornamental graphics. Performance
evaluation has been reported, showing that the LM-tree indexing algorithm is very time-
efficient. At last, the source code of this contribution is also made available for the interest
of researchers at this address®.

Notwithstanding the obtained results are interesting, we realize that many different
lines of researches for this work are still possible. Followings are several improvements
planned in the future work.

e To this end, the proposed LM-tree is a balance but static tree. That said, our indexing
algorithm would not work for the cases where the data are dynamically changed over
time. Accordingly, dynamic insertion and deletion of the data points in the LM-tree
would be also investigated in the future to make the system adaptive to the dynamic
change of the data.

e As the study of the binary features is more and more becoming a great interest of
researches, different tests on binary features would be interesting to evaluate the
proposed LM-tree.

e It is agreed that performance of an indexing algorithm is highly dependent on partic-
ular dataset. It is therefore a good idea to train the system on a particular dataset
provided some prior knowledge about the desired search precision. As already re-
ported in [Muja and Lowe, 2009|, automatic parameter tuning using cross-validation
approach would be integrated to make the system more robust and well-fitting to
specific datasets.

e The use of many high variance axes for data partitioning (e.g., more than two) would
be considered to study the new behavior of the system.

e In addition to these open works, the study of designing an indexing system, which can
work on the data stored on external disk, will be investigated to deal with extremely
large datasets that are not able to be fully loaded into the main memory.

As the last conclusion, we expected that the two contributions in this dissertation shall
draw much of interest and attention from the research community.

Shttps://sites.google.com /site/ptalmtree/
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