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Introduction

What is Deep Learning ?

I A kind of statistical machine learning algorithms

I Good old Neural Networks, with more layers/modules

I Non-linear, hierarchical, abstract representations of data

I Flexible models with any input/output type and size

I Differentiable functional programming (automatic differentiation)
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Introduction

I “Classical” learning systems

Figure by A. Erdem
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Introduction

I “Classifical” learning system

I Deep learning system

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Introduction

Why Deep Learning now ?

deep learning

other learning
algorithms

amount of data
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Computing power (GPUs) Labeled datasets

Open source frameworks

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Introduction

I Deep Learning in Vision

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Introduction

I Deep Learning in speech processing

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Introduction
I Deep Learning in games

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Introduction

I Learning a hierarchy of increasingly abstract representations

Figure by Y.Lecun and M.A. Ranzato
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Introduction

Deep Learning → End-to-End learning

I A hierarchy of trainable feature transforms.

I Each module transforms its input representation into a higher-level
one.

I Low-level features are shared among categories.

I As the level increases, features are increasingly global and invariant.

Figure by Y.Lecun and M.A. Ranzato
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Introduction

”Shallow” vs Deep Learning

I ”Shallow” models

I ”Deep” models

Figures by Y.Lecun and M.A. Ranzato
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Introduction

I Real data examples for a given task are usually not spreaded
everywhere in input space, but rather clustered on a low-dimension
”manifold”, also referred to as latent space.

I Example : images of faces, of size 200× 200 → each sample in the
input space is a vector in R40000

I But the number of features (degrees of freedom) leading to plausible
images of faces is much smaller : orientation, lighting, positions of
face elements, shapes, skin color, hair type, etc.

Figures by G.Perarneau et al
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Introduction

Why features should be learnt ?

I There is a lot of redundancy in the input space.

I A simple fact : in images, neighboring pixels very often look the
same.

I There is much less redundancy in the latent space.

I Learning features lets the system decide itself how to deal with this
redundancy.

14



Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

15



Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

16



A single neuron

I A single neuron

x

x1
x2

xD

w1

wD

b

a
y

I Weighted sum of inputs plus bias : a = wTx+ b = b+
D∑
j=1

wjxj

I Output of neuron : activation function applied to a :
y = f(a) = f(wTx+ b)
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A single layer of neurons
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I D inputs, K neurons (inputs, outputs and biases are column vectors)

I W = weight matrix of size K ×D, b = bias vector of size K

I a = Wx+ b

I Output of layer : activation function f applied element-wise to a :

y = f(a) = [f(a1) · · · f(aK)]T

I Each input is connected to each output : known as dense or
fully-connected layer 18



Common activation functions
Element-wise activation functions :

I Identity : f(a) = a
I Sigmoid :

I Logistic function : f(a) =
1

1 + e−a (often referred to as the sigmoid)

I Hyperbolic tangent : f(a) = tanh(a)
I Arctangent : f(a) = arctan(a)

I ReLU (Rectified Linear Unit) : f(a) = max(0, a)

The softmax function
I A.k.a normalized exponential
I Outputs a vector whose components sum to 1 :

softmax(a) =
1

K∑
j=1

eaj

 ea1

...
eaK


I Usually, used for 1-of-K representation (one-hot encoding) in the

last layer of neural-network based classifier. 19



The 3 sets of supervised learning

Training set

I For fitting the parameters of the model (for neural networks :
weights and biases)

I Should not overfit !

Validation set (not always used)

I For adjusting the hyperparameters of the model (for neural
networks, this can be the size of hidden layers)

I Can be used for regularization

Test set

I Used to provide an unbiased evaluation of a final model which was
fit on the training dataset

I Follows the same probability distribution than training set

I Evaluate generalization ability of model (handling samples which
were never seen during training)

20



Classification and loss

I We have a training set (xi,yi)i=1...N . Each xi is a feature vector
of size D. Each yi is the desired output (label) of size K.

I For a classification task, K is the number of classes, and yi is a
1-of-K encoding of the label of the ith sample.

I The loss function measures, for a given sample, the discrepancy
between the output of the model (the neural network) and the label.
Common loss functions (p,q ∈ RK) :

I Mean squared error : L(p,q) = 1

K
‖p− q‖2

I Mean absolute error : L(p,q) = 1

K

K∑
j=1

|pj − qj |

I Cross-entropy (negative log-likelihood) loss (for pj and qj between 0

and 1) : L(p,q) = −
K∑
j=1

qj log pj
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Cost minimization

I The parameters of the model M are represented by vector θ.

I The output of the model for a given sample is denoted by M(xi; θ).

I The total cost function (= error) is the sum of losses on the entire
training set.

I Training the model = iteratively modify parameters θ in order to
minimize the cost function :

C(θ) =
N∑
i=1

L(M(xi; θ),yi)

I The cost function is differentiable with respect to each parameter.
When the learning procedure has converged to a local minimum,
we should have, ideally :

dC
dθ

= 0
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Confusion matrix
I At test time, one wishes the cost function to be small on the test set
I In addition, one often wishes to know in which class the errors are
→ generate a confusion matrix (a row = an actual class, a column
= a predicted class)
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Backpropagation

I Minimization of the cost function by gradient descent : at a given
iteration t, for each parameter θj in θ,

θt+1
j ← θtj − α

∂C
∂θj

,

where α is the learning rate.

I Backpropagation : parameters (weights and biases) are updated by
descending order of layer.

I Let wi,j,l be the weight corresponding to input j and output i in

layer l. Derivative
∂C

∂wi,j,l
depends on

∂C
∂w·,·,l+1

→ chain rule of

derivation.

I Forward pass : feed a sample at the input of the network, compute
activation and output for each neuron in ascending order of layer.

I Backward pass : evaluate derivative of cost function for parameters
and update these parameters, for each neuron in descending order of
layer. 24



Backpropagation

I Forward pass : feed a sample at the input of the network, compute
activation and output for each neuron in ascending order of layer.

I Backward pass : evaluate derivative of cost function for parameters
and update these parameters, for each neuron in descending order of
layer.

25



Batch vs stochastic gradient descent

I Batch gradient descent = average
∂L(M(xi; θ),yi)

∂θj
over all

samples xi to update each θj → Computationally expensive !

θt+1
j ← θtj −

α

N

N∑
i=1

∂L(M(xi; θ),yi)

∂θj
.

I Stochastic gradient descent = randomly shuffle training samples,
pick a sample xi and update each θj :

θt+1
j ← θtj − α

∂L(M(xi; θ),yi)

∂θj
.

I Stochastic minibatch gradient descent = randomly shuffle samples,
pick a small subset of samples and update each θj with derivatives
averaged over this small subset.

26



Training a model

I The cost function is non-convex → has many local minima

I Gradient descent converges to a local minimum (we hope that it is
a good one !)

I Dependence on initialization (typically, weights are randomly drawn
from a zero-mean normal distribution. Biases are set to 0)

I Different sets of parameters can lead to the same classification

I An epoch is one pass of gradient descent (batch, stochastic or
minibatch) over the whole training set

I Training usually needs a large number of epochs

27
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ConvNets : introduction

I Introduced in late 1990s by Yann Lecun et al for digit recognition

The LeNet5 network

29



ConvNets : introduction
I Introduced in late 1990s by Yann Lecun et al for digit recognition

The MNIST dataset 30



Why ConvNets ?

I For a fully connected layer of input size N and output size M , the
number of parameters to learn is N(M + 1).

I If a full image was flattened and fed into a fully-connected layer of
neurons...

I For a small image size, say 200× 200, and 50 neurons in the layer,
200× 200× 51 parameters to learn, for a single layer →too many
parameters.

I Spatial layout would be destroyed.

I Conversely, ConvNets gradually decrease image size, and gradually
increase feature vector size → spatial layout is progressively encoded
into the successive layers.
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A convolutional sequence

I Input = feature maps (or input image) of size W ×H ×D.

I Output = features maps of size W ′ ×H ′ ×D′ (usually, W ′ ≤W
and H ′ ≤ H and D′ ≥ D).

I A convolutional sequence is made up of three layers :
I A convolutional layer.
I A non-linear activation layer (sigmoid, tanh, arctan, ReLU, ...).
I A pooling layer (average, max, ...).

I Can handle variable-sized input

Convolutional sequence

Non-linear
activation

Input
to layer

Convolutional
layer

Pooling
layer

Output to next
conv. layer

32



A full ConvNet

I Usually, one or two fully-connected (dense) layer(s) after a sequence
of convolutional groups.

I If the goal is classification, the softmax function is chosen as
activation in the last layer : desired outputs are 1-of-K encoding of
class labels (outputs sum to 1)

... Dense
layer 

Dense
layer 

Input
image

Output
class

Conv.
seq. 1

Conv.
seq. 2

Conv.
seq. n

33



Convolution (reminder ?)

I Mathematically speaking, in a continuous space setting, the
convolution product between two functions f : D 7→ R
and g : D 7→ R, is another function defined by

(f ∗ g)(p) =
∫
D
f(p− y)g(y)dy

I Properties : bilinear, associative and commutative

I In a discrete 2D setting, the convolution between an image f and a
filter (or mask) g (of size K × L) outputs a new image h, such that

h[x, y] =

K−1∑
i=0

L−1∑
j=0

f

[
x− i+ K

2
, y − j + L

2

]
g[i, j]

I Filter is usually centered → K and L are odd

34



Cross-correlation

I What is actually done in a convolutional layer is known as
cross-correlation = convolution without flipping the mask :

h[x, y] =

K−1∑
i=0

L−1∑
j=0

f

[
x+i− K

2
, y+j − L

2

]
g[i, j]

I Each pixel value in the output image is a weighted sum of
neighboring pixel values in the input image

I Numerical example (3× 3 mask) :

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

12 12 17

10 17 19

9 6 14

Input image

Mask Output image
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Convolution
I Filter is slided over the image : the same weights are applied on

overlapping areas
I Numerical example :

I Input image size W ×H, mask size=K ×L. If no padding is applied
(and stride=1), output image size=(W −K + 1)× (H − L+ 1)

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
36



Padding and stride

I Filter size=3× 3, stride=1, no padding

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
37



Padding and stride
I Filter size=3× 3, stride=1, horizontal padding=1, vertical

padding=1

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
38



Padding and stride

I Filter size=3× 3, stride=2, no padding

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
39



Convolutional sequence
Convolutional layer

I Filter weights and biases are learned !

I Filter size is much smaller than image size. Typically, 3× 3, 5× 5, ...

I Number of parameters independent from the width and height of
the input feature maps.

I In practice, input feature maps have several features per pixel (depth
is not necessarily 1) → 3D convolution.

I Example : filter size=k× k, nb input features (depth)=A, nb output
features=B, total number of parameters of layer is
(k × k ×A+ 1)×B (+1 comes from the bias) → several orders of
magnitude smaller than a fully connected layer.

Non-linear activation layer

I Very often, ReLU(x) = max(0, x) is used

I Activation function is applied elementwise : for each output feature
of each pixel

I No parameter to learn here 40



Convolutional sequence

Pooling layer

I Goal : reduce the spatial size of the feature map → downsampling

I Number of output features B is unchanged, pooling is performed for
each of these B features.

I No parameter to learn here

I Average or maximum taken over p× p squares of each feature map.

I Squares are usually non-overlapping : stride = p. Example : max
pooling, p = 2

41



Size of feature maps

I Example of a convolutional sequence with sizes of feature maps

32x32x3

28x28x7

28x28x7
14x14x7

Convolution, 7 filters, size 5x5
No padding, stride=1

ReLU activation

Max pooling
size 2x2
stride=2

42



Parameter initialization
What should not be done : all zero initialization

I If all neurons compute the same output, they will undergo the same
parameter update.

I No source of difference between neurons if their weights are
initialized to the same value.

Small random numbers

I Sample from a normal distribution (zero-mean, unit standard
deviation).

I Problem with the above suggestion : the distribution of the outputs
from a randomly initialized neuron has a variance that grows with
the number of inputs.

I The variance of each neuron’s output can be normalized to 1 by
scaling its weight vector by the square root of its number of inputs

W ∼ 1√
n
N (0, 1)

with n = number of input features. 43



Backpropagation

Backpropagation through convolutional layer + activation layer

I Consider the following example : convolutional layer with a 2× 2
mask with bias, stride=1, no padding.

I Non-linear activation f .

I Input feature map size = W ×H, so output feature map size =
(W − 1)× (H − 1)

x1,1 x1,2 x1,W

x2,1 x2,2 x2,W

xH,1xH,2 xH,W

w1,1 w1,2

w2,1 w2,2

+b

f

y1,1 y1,2 y1,W−1

y2,1 y2,2 y2,W−1

yH−1,1yH−1,2 yH−1,W−1

∗
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Backpropagation

I In the forward pass, each output yi,j is computed as

yi,j = f(w1,1xi,j + w1,2xi,j+1 + w2,1xi+1,j + w2,2xi+1,j+1 + b)

= f

b+ ∑
λ=1..2
γ=1..2

wλ,γxi+λ−1,j+γ−1


I Each weight wλ,γ and the bias b takes part in the calculation of

every yi,j

I During the backward pass, assume that each
∂L
∂yi,j

has just been

computed (coming from the following pooling layer)
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Backpropagation

I For a given weight wλ,γ :

∂L
∂wλ,γ

=
∑
i,j

∂L
∂yi,j

∂yi,j
∂wλ,γ

=
∑
i,j

∂L
∂yi,j

xi+λ−1,j+γ−1f
′

b+ ∑
λ′=1..2
γ′=1..2

wλ′,γ′xi+λ′−1,j+γ′−1


I For the bias b,

∂L
∂b

=
∑
i,j

∂L
∂yi,j

∂yi,j
∂b

=
∑
i,j

∂L
∂yi,j

f ′

b+ ∑
λ′=1..2
γ′=1..2

wλ′,γ′xi+λ′−1,j+γ′−1


46



Backpropagation

Backpropagation in pooling layer

I Max pooling, 2× 2, stride=2 (no overlap)

I Input feature map size = W ×H, so output feature map size =
W

2
× H

2

x1,1 x1,2

x2,1 x2,2

max

y1,1

yi,j = max {x2i−1,2j−1 , x2i−1,2j , x2i,2j−1 , x2i,2j}
= max

λ=−1..0
γ=−1..0

x2i+λ,2j+γ

47



Backpropagation

I During the backward pass, assume that each
∂L
∂yi′,j′

has just been

computed (coming from the following convolutional layer)

I The max function is not differentiable BUT...

I ... there’s a trick : during the forward pass, store, for each yi′,j′ , the
position in feature map x which led to the maximum :

(λ∗, γ∗) = argmax
λ=−1..0
γ=−1..0

x2i′+λ,2j′+γ

I A given input xi,j takes part in the computation of yi′,j′ ,
where i′ = b(i− 1)/2c+ 1 and j′ = b(j − 1)/2c+ 1. Hence,

∂L
∂xi,j

←


∂L
∂yi′,j′

if i = 2i′ + λ∗, j = 2j′ + γ∗

0 otherwise

48



Backpropagation
I Example : during forward pass, x1,2 has the maximum value among
{x1,1 , x1,2 , x2,1 , x2,2}

I During backward pass,
∂L
∂y1,1

is backpropagated to
∂L
∂x1,2

I The other
∂L
∂xi,j

are set to 0

1.2 7.4

0.3 3.8

max 7.4

0 −0.8

0 0
−0.8

xi,j

yi′,j′

∂L
∂xi,j

∂L
∂yi′,j′ 49



Regularization : parameter norm penalties

I The goal of regularization is to prevent overfitting (limit
generalization error).

I First technique : add a regularization term (some norm over the
vector of parameters) in the cost function

C(θ) =
N∑
i=1

L(M(xi; θ),yi)+λ ‖θ‖

where λ is a hyperparameter.

I For neural networks, ‖θ‖ penalizes only the weights, and leave the
biases

I L2 norm (the most common form of regularization) → encourages
the network to use all of its inputs a little, rather than some of its
inputs a lot

I L1 norm → leads the weight vectors to become sparse during
optimization 50



Regularization : data augmentation

I Train on more data ! Of course, in practice, the amount of data is
limited.

I Create “fake” data and add it to the training set

I Data augmentation by affine transformation :

I Another possibility is data augmentation by injecting noise in the
inputs

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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The ImageNet dataset

I The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
evaluates algorithms for object detection and image classification at
large scale.

53



AlexNet

I Won the ILSVRC 2012 challenge

I [A. Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. NIPS 2012]
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AlexNet : Local response normalization (LRN)

I Not used much in other architectures...

I In neurobiology, “lateral inhibition” = capacity of an excited neuron
to subdue its neighbors.

I Favors detection of high frequency features with a large response.

I If we normalize around the local neighborhood of the excited neuron,
it becomes even more sensitive as compared to its neighbors.

I Useful with ReLU activations, which are unbounded.

I LRN will dampen the responses that are uniformly large in any given
local neighborhood. If all the values are large, then normalizing
those values will diminish all of them.
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AlexNet : Local response normalization (LRN)

I Normalization is performed across filters of the same convolutional
layer (after ReLU activation).

I At a fixed spatial position (i, j) :

yki,j =
xki,jα1 + α2

k+n/2∑
λ=k−n/2

(
xλi,j

)2β

I xki,j = the kth input feature to the LRN layer (output of the kth

filter of the previous convolutional layer, after ReLU activation).

I yki,j = the kth output of the LRN layer.

I n = size of neighborhood (= set of neighboring filters) (λ− n/2
and λ+ n/2 are bounded between 0 and N − 1, where N is the
number of filters).

I α1, α2, β, n are hyperparameters.

I No parameter to learn here. 56



AlexNet in detail

I Input : 224× 224× 3 input images

I 1st Convolutional layer : 96 filters of size 11× 11× 3 (stride = 4, no
padding) → 55× 55× 96 feature maps

I ReLU

I Max-pooling layer : 3× 3 (stride = 2) → 27× 27× 96 feature maps

I Local Response Normalization

I 2nd Convolutional layer : 256 filters of size 5× 5× 48 (stride = 1,
padding=2) → 27× 27× 256 feature maps

I ReLU

I Max-pooling layer : 3× 3 (stride = 2) → 13× 13× 256 feature maps

I Local Response Normalization

57



AlexNet in detail

I 3rd Convolutional layer : 384 filters of size 3× 3× 256 (stride = 1,
padding=1) → 13× 13× 384 feature maps

I 4th Convolutional layer : 384 filters of size 13× 13× 192 (stride =
1, padding=1) → 13× 13× 384 feature maps

I 5th Convolutional layer : 256 filters of size 3× 3× 192 (stride = 1,
padding=1) → 13× 13× 256 feature maps

I Max-pooling layer : 3× 3 (stride = 2) → 6× 6× 256 feature maps

I 1st Fully connected layer : 4096 neurons

I 2nd Fully connected layer : 4096 neurons

I 3st Fully connected layer : 1000 neurons

I In total, there are 60 million parameters need to be trained !

58



Use of pretrained models

I Training a model on ImageNet from scratch takes days or weeks.

I Many models trained on ImageNet and their weights are publicly
available !

I We can perform fine-tuning for transfer learning

I Retraining the/some parameters of the network (given enough data)

I Truncate the last layer(s) of the pre-trained network

I Train a classification model from these features on a new
classification task (early layers are frozen, only late layers are trained)

59
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Why recurrent neural networks ?

Feedforward neural networks

I All input values of a given sample are considered independent of
each other.

I When processing sequential data, values at different time steps
would also be considered independent → does not take advantage of
time coherence !

I Cannot handle variable-length sequential data, e.g sentences.

Recurrent neural networks

I Make use of sequential information

I Output is made dependent on previous computations

I Recurrent neurons have a memory = internal hidden state

I Can handle variable-length sequences

62



Sequential data
I Let X = (x1,x2, ...,xT ) be a sequence of T vectors of size D
I Processing sequential data is roughly equivalent to predict what

comes next :

p(X) =

T∏
t=1

p(xt|x1, ...,xt−1)

I Examples of sequential data :
I Sound wave : D = 1 (mono) or D = 2 (stereo)
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Sequential data

I Sentences : sequence of words

I Initial encoding of words : 1-of-V vectors, where V is the size of
vocabulary (huge !)

The man is wearing a hat
0 1 0 0 0 0
... 0 1

...
...

...

0
... 0

... 1
...

1
...

... 0 0
...

0
...

... 1
... 0

...
...

... 0
... 1

0 0 0 0
... 0

I Words are re-encoded in a space of smaller dimension (embedding)
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Recurrent neurons
I A recurrent layer of neurons (input and output are vectors !) :

I x = input vector of size D

I y = output vector of size K

I h = hidden state vector of size H

I U = H ×D weight matrix

I V = K ×H weight matrix

I W = H ×H weight matrix

x

W

U

V

y

h

I The hidden state are the “memory” of the neuron. It is calculated
based on the previous hidden state and the current input :

ht = f1(Uxt +Wht−1)

I The output is calculated based on the hidden state :

yt = f2(Vht) 65



Recurrent neurons

I The hidden state captures information about what happened in all
the previous time steps (in practice, it typically cannot capture
information from too many time steps ago)

I Unlike a traditional deep neural network, which uses different
parameters at each layer, a RNN shares the same parameters (U,
V, W above) across all time steps

I We are performing the same task at each step, just with different
inputs. This greatly reduces the total number of parameters we need
to learn.
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Recurrent neurons

I The same reccurent layer, unfolded in time :

xt−1 xt xt+1

yt−1 yt yt+1

ht−1 ht ht+1

U U U

V VV

W W W
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Backpropagation through time (BPTT)

I The full sequence is one training sample → the loss for one sample
is the sum of the losses at each time step.

L(y,y) =
T∑
t=1

L(yt,yt)

where y is the desired output (label) (sample index i is dropped for
convenience)

I Let Lt be a shortened notation for L(yt,yt).

I To train the recurrent layer, we should compute
∂Lt
∂U

,
∂Lt
∂V

and
∂Lt
∂W

for every t

I We are differentiating real numbers and vectors with respect to
vectors and matrices ! → matrix calculus
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Backpropagation through time (BPTT)

I From now on, we will reason on a single recurrent neuron
with D = 1, K = 1, H = 1.

I Input xt, output yt and hidden state ht are scalars.

I Weights u, v, w are scalars too.

ht = f1(uxt + wht−1)
yt = f2(vht)

I For v, we have the easy relation

∂Lt
∂v

=
∂Lt
∂yt

∂yt
∂v

=
∂Lt
∂yt

htf
′
2(vht)
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Backpropagation through time (BPTT)

I For w, we have the following recurrent relation :

∂Lt
∂w

=
∂Lt
∂yt

∂yt
∂w

=
∂Lt
∂yt

∂ht
∂w

vf ′2(vht)

with
∂ht
∂w

=
∂

∂w

{
f1(uxt + wht−1)

}
=

(
ht−1 + w

∂ht−1
∂w

)
f ′1(uxt + wht−1)

= ...

I Recurrence stops as
∂h0
∂w

= 0.

71



Backpropagation through time (BPTT)

I Similarly, for u, we have the following recurrent relation :

∂Lt
∂u

=
∂Lt
∂yt

∂yt
∂u

=
∂Lt
∂yt

∂ht
∂u

vf ′2(vht)

with
∂ht
∂u

=
∂

∂u

{
f1(uxt + wht−1)

}
=

(
xt + w

∂ht−1
∂u

)
f ′1(uxt + wht−1)

= ...

I Recurrence stops as
∂h0
∂u

= 0.
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Backpropagation through time (BPTT)

I Backpropagation through time for a given loss at time step t = 3 :

x1 x2 x3

y1 y2 y3

∂L3
∂y3

∂L3

∂h0

∂L3

∂h1

∂L3

∂h2

h0

h1 h2 h3
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Neural Language Processing

I Possible tasks in Neural Language Processing (NLP) : neural
machine translation (NMT), visual question answering, chatbots, ...

I A recurrent neural network learns a language model, assigning a
probability to a sequence of words

I Plausible sequences have higher probabilities :

p(“I like cats“) > p(”I table cats“)
p(”I like cats“)) > p(”like I cats“)

I Words are initially represented as 1-of-V vectors → vocabulary
size V is huge !

I For NLP, inputs of recurrent neural networks are embeddings
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Word embeddings

I Word embeddings have a size much smaller than V

I Example :

Apple : [1.11, 2.24, 7.88]
Orange : [1.01, 2.04, 7.22]
Car : [8.41, 2.34,−1.28]
Table : [−1.41, 7.34, 3.01]

I Embeddings are different (e.g. in terms of Euclidean distance) if
corresponding words are semantically different

I Initial sequence : (ω1,ω2, ...ωT )

I Sentence fed as input to the RNN : x = (x1,x2, ...xT ),
with

xt = Eωt

where E is the embedding operator (projection)
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Language modeling

I Input : sequence (ω1,ω2, ...ωT )

I Output : shifted sequence (ω2,ω3, ...ωT+1)

W W

V V V

U U U

ω2 ω3 ω4

y1 y2 y3

h1 h2 h3

x1 x2 x3

ω1 ω2 ω3

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
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Language modeling

I Neural machine translation (NMT)

I The hidden state at the last iteration encodes the memory for the
entire sentence

Figure by A. See, http://web.stanford.edu/class/cs224n
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Conclusion

Deep learning models

I are powerful, for many many tasks !

I need A LOT of annotated data,

I move the problem of feature engineering to architecture engineering

Forthcoming challenges

I Explainability of learnt features

I Make architectures less time and memory-consuming (decrease the
number of layers/parameters without performance loss)

I Public debate on algorithms, artificial intelligence, ethics... (what AI
can do, what it cannot do, what it should not be used for...)
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