Introduction to Deep Learning

Julien Mille

INSA Centre Val de Loire - Département GSI, 5A, option ACAD

Université de Tours - Master BDMA

Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT)

Outline

Introduction

Convolutional networks

Reminder : neural networks Convolutional neural networks Architecture of convolutional layers Training ConvNets Example of successful architecture : AlexNet

Recurrent neural networks

Neurons for sequential data Backpropagation throuth time NLP with RNN

What is Deep Learning?

- A kind of statistical machine learning algorithms
- ► Good old Neural Networks, with more layers/modules
- Non-linear, hierarchical, abstract representations of data
- Flexible models with any input/output type and size
- Differentiable functional programming (automatic differentiation)

"Classical" learning systems

VISION

"Classifical" learning system

Deep learning system

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Deep Learning in Vision

ling platform golfcart [[Krizhevsky 2012]

[Faster R-CNN - Ren 2015]

[Ciresan et al. 2013]

[NVIDIA dev blog]

Deep Learning in speech processing

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Deep Learning in games

[Deepmind AlphaGo / Zero 2017]

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Learning a hierarchy of increasingly abstract representations

Figure by Y.Lecun and M.A. Ranzato

 $\mathsf{Deep}\ \mathsf{Learning} \to \mathsf{End}\text{-}\mathsf{to}\text{-}\mathsf{End}\ \mathsf{learning}$

- A hierarchy of trainable feature transforms.
- Each module transforms its input representation into a higher-level one.
- Low-level features are shared among categories.
- As the level increases, features are increasingly global and invariant.

"Shallow" vs Deep Learning

"Shallow" models

- Real data examples for a given task are usually not spreaded everywhere in **input space**, but rather clustered on a low-dimension "manifold", also referred to as **latent space**.
- Example : images of faces, of size $200 \times 200 \rightarrow$ each sample in the input space is a vector in \mathbb{R}^{40000}
- But the number of features (degrees of freedom) leading to plausible images of faces is much smaller : orientation, lighting, positions of face elements, shapes, skin color, hair type, *etc*.

Why features should be learnt?

- There is a lot of redundancy in the input space.
- A simple fact : in images, neighboring pixels very often look the same.
- There is much less redundancy in the latent space.
- Learning features lets the system decide itself how to deal with this redundancy.

Outline

Introduction

Convolutional networks

Reminder : neural networks Convolutional neural networks

Architecture of convolutional layers Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

Neurons for sequential data Backpropagation throuth time NLP with RNN

Outline

Introduction

Convolutional networks

Reminder : neural networks

Convolutional neural networks Architecture of convolutional layers Training ConvNets Example of successful architecture : AlexNet

Recurrent neural networks

A single neuron

- Weighted sum of inputs plus bias : $a = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b = b + \sum_{j=1}^{D} w_j x_j$
- Output of neuron : activation function applied to a : $y = f(a) = f(\mathbf{w}^{\mathsf{T}} \boldsymbol{x} + b)$

- ▶ D inputs, K neurons (inputs, outputs and biases are column vectors)
- $\mathbf{W} =$ weight matrix of size $K \times D$, $\mathbf{b} =$ bias vector of size K
- $\mathbf{b} \mathbf{a} = \mathbf{W} \mathbf{x} + \mathbf{b}$
- Output of layer : activation function f applied element-wise to \mathbf{a} :

$$\boldsymbol{y} = \mathbf{f}(\mathbf{a}) = [f(a_1) \cdots f(a_K)]^\mathsf{T}$$

Each input is connected to each output : known as dense or fully-connected layer

Common activation functions

Element-wise activation functions :

- Identity : f(a) = a
- ► Sigmoid :
 - Logistic function : $f(a) = \frac{1}{1 + e^{-a}}$ (often referred to as *the* sigmoid)
 - Hyperbolic tangent : $f(a) = \tanh(a)$
 - Arctangent : $f(a) = \arctan(a)$
- ReLU (Rectified Linear Unit) : $f(a) = \max(0, a)$

The softmax function

- A.k.a normalized exponential
- Outputs a vector whose components sum to 1 :

softmax(
$$\mathbf{a}$$
) = $\frac{1}{\sum_{j=1}^{K} e^{a_j}} \begin{bmatrix} e^{a_1} \\ \vdots \\ e^{a_K} \end{bmatrix}$

► Usually, used for 1-of-K representation (*one-hot* encoding) in the last layer of neural-network based classifier.

19

The 3 sets of supervised learning

Training set

- For fitting the **parameters** of the model (for neural networks : weights and biases)
- Should not overfit !

Validation set (not always used)

- For adjusting the hyperparameters of the model (for neural networks, this can be the size of hidden layers)
- Can be used for regularization

Test set

- Used to provide an unbiased evaluation of a final model which was fit on the training dataset
- Follows the same probability distribution than training set
- Evaluate generalization ability of model (handling samples which were never seen during training)

Classification and loss

- ▶ We have a training set (x_i, y_i)_{i=1...N}. Each x_i is a feature vector of size D. Each y_i is the desired output (label) of size K.
- ▶ For a classification task, K is the number of classes, and y_i is a 1-of-K encoding of the label of the ith sample.
- ► The loss function measures, for a given sample, the discrepancy between the output of the model (the neural network) and the label. Common loss functions (p, q ∈ ℝ^K) :
 - Mean squared error : $\mathcal{L}(\mathbf{p}, \mathbf{q}) = \frac{1}{K} \|\mathbf{p} \mathbf{q}\|^2$
 - Mean absolute error : $\mathcal{L}(\mathbf{p}, \mathbf{q}) = \frac{1}{K} \sum_{j=1}^{K} |p_j q_j|$
 - ► Cross-entropy (negative log-likelihood) loss (for p_j and q_j between 0 and 1) : $\mathcal{L}(\mathbf{p}, \mathbf{q}) = -\sum_{j=1}^{K} q_j \log p_j$

Cost minimization

- The parameters of the model \mathcal{M} are represented by vector θ .
- The output of the model for a given sample is denoted by $\mathcal{M}(\boldsymbol{x}_i; \theta)$.
- The total cost function (= error) is the sum of losses on the entire training set.
- Training the model = iteratively modify parameters θ in order to minimize the cost function :

$$\mathcal{C}(heta) = \sum_{i=1}^N \mathcal{L}(\mathcal{M}(oldsymbol{x}_i; heta), oldsymbol{y}_i)$$

The cost function is differentiable with respect to each parameter. When the learning procedure has converged to a local minimum, we should have, ideally :

$$\frac{\mathsf{d}\mathcal{C}}{\mathsf{d}\theta}=\mathbf{0}$$

Confusion matrix

- At test time, one wishes the cost function to be small on the test set
- In addition, one often wishes to know in which class the errors are
 - \rightarrow generate a confusion matrix (a row = an actual class, a column
 - = a predicted class)

Backpropagation

Minimization of the cost function by gradient descent : at a given iteration t, for each parameter θ_i in θ,

$$\theta_j^{t+1} \leftarrow \theta_j^t - \alpha \frac{\partial \mathcal{C}}{\partial \theta_j},$$

where α is the **learning rate**.

- Backpropagation : parameters (weights and biases) are updated by descending order of layer.
- ▶ Let $w_{i,j,l}$ be the weight corresponding to input j and output i in layer l. Derivative $\frac{\partial C}{\partial w_{i,j,l}}$ depends on $\frac{\partial C}{\partial w_{\cdot,\cdot,l+1}}$ → chain rule of derivation.
- Forward pass : feed a sample at the input of the network, compute activation and output for each neuron in ascending order of layer.
- Backward pass : evaluate derivative of cost function for parameters and update these parameters, for each neuron in descending order of layer.

Backpropagation

- ► Forward pass : feed a sample at the input of the network, compute activation and output for each neuron in ascending order of layer.
- Backward pass : evaluate derivative of cost function for parameters and update these parameters, for each neuron in descending order of layer.

Batch vs stochastic gradient descent

▶ Batch gradient descent = average $\frac{\partial \mathcal{L}(\mathcal{M}(\boldsymbol{x}_i; \theta), \boldsymbol{y}_i)}{\partial \theta_j}$ over all samples \boldsymbol{x}_i to update each $\theta_j \rightarrow$ Computationally expensive!

$$\theta_j^{t+1} \leftarrow \theta_j^t - \frac{\alpha}{N} \sum_{i=1}^N \frac{\partial \mathcal{L}(\mathcal{M}(\boldsymbol{x}_i; \theta), \boldsymbol{y}_i)}{\partial \theta_j}$$

Stochastic gradient descent = randomly shuffle training samples, pick a sample x_i and update each θ_j:

$$\theta_j^{t+1} \leftarrow \theta_j^t - \alpha \frac{\partial \mathcal{L}(\mathcal{M}(\boldsymbol{x}_i; \theta), \boldsymbol{y}_i)}{\partial \theta_j}$$

Stochastic minibatch gradient descent = randomly shuffle samples, pick a small subset of samples and update each θ_j with derivatives averaged over this small subset.

Training a model

- The cost function is **non-convex** \rightarrow has many local minima
- Gradient descent converges to a local minimum (we hope that it is a good one!)
- Dependence on initialization (typically, weights are randomly drawn from a zero-mean normal distribution. Biases are set to 0)
- Different sets of parameters can lead to the same classification
- An epoch is one pass of gradient descent (batch, stochastic or minibatch) over the whole training set
- Training usually needs a large number of epochs

Outline

Introduction

Convolutional networks

Reminder : neural networks

Convolutional neural networks

Architecture of convolutional layers Training ConvNets Example of successful architecture : AlexNet

Recurrent neural networks

ConvNets : introduction

▶ Introduced in late 1990s by Yann Lecun et al for digit recognition

The LeNet5 network

ConvNets : introduction

► Introduced in late 1990s by Yann Lecun et al for digit recognition

The MNIST dataset

Why ConvNets?

- ► For a fully connected layer of input size N and output size M, the number of parameters to learn is N(M + 1).
- If a full image was flattened and fed into a fully-connected layer of neurons...
 - ▶ For a small image size, say 200×200 , and 50 neurons in the layer, $200 \times 200 \times 51$ parameters to learn, for a single layer \rightarrow too many parameters.
 - Spatial layout would be destroyed.
- ► Conversely, ConvNets gradually decrease image size, and gradually increase feature vector size → spatial layout is progressively encoded into the successive layers.

A convolutional sequence

- Input = feature maps (or input image) of size $W \times H \times D$.
- Output = features maps of size $W' \times H' \times D'$ (usually, $W' \leq W$ and $H' \leq H$ and $D' \geq D$).
- A convolutional sequence is made up of three layers :
 - A convolutional layer.
 - A non-linear activation layer (sigmoid, tanh, arctan, ReLU, ...).
 - A pooling layer (average, max, ...).
- Can handle variable-sized input

A full ConvNet

- Usually, one or two fully-connected (dense) layer(s) after a sequence of convolutional groups.
- If the goal is classification, the softmax function is chosen as activation in the last layer : desired outputs are 1-of-K encoding of class labels (outputs sum to 1)

Convolution (reminder?)

► Mathematically speaking, in a continuous space setting, the convolution product between two functions f : D → R and g : D → R, is another function defined by

$$(f\ast g)(\boldsymbol{p}) = \int_{\mathcal{D}} f(\boldsymbol{p}-\boldsymbol{y})g(\boldsymbol{y})\mathsf{d}\boldsymbol{y}$$

- Properties : bilinear, associative and commutative
- ► In a discrete 2D setting, the convolution between an image f and a filter (or mask) g (of size K × L) outputs a new image h, such that

$$h[x,y] = \sum_{i=0}^{K-1} \sum_{j=0}^{L-1} f\left[x - i + \frac{K}{2}, y - j + \frac{L}{2}\right] g[i,j]$$

• Filter is usually centered $\rightarrow K$ and L are odd

Cross-correlation

What is actually done in a convolutional layer is known as cross-correlation = convolution without flipping the mask :

$$h[x,y] = \sum_{i=0}^{K-1} \sum_{j=0}^{L-1} f\left[x+i - \frac{K}{2}, y+j - \frac{L}{2}\right] g[i,j]$$

- Each pixel value in the output image is a weighted sum of neighboring pixel values in the input image
- Numerical example $(3 \times 3 \text{ mask})$:

12	12	17
10	17	19
9	6	14
Output image		

Input image

Convolution

- Filter is slided over the image : the same weights are applied on overlapping areas
- Numerical example :

▶ Input image size W × H, mask size=K × L. If no padding is applied (and stride=1), output image size=(W − K + 1) × (H − L + 1) 36

Figures by V. Dumoulin, https://github.com/vdumoulin/conv_arithmetic
Padding and stride

Filter size= 3×3 , stride=1, no padding

Figures by V. Dumoulin, https://github.com/vdumoulin/conv_arithmetic

Padding and stride

► Filter size=3 × 3, stride=1, horizontal padding=1, vertical padding=1

Figures by V. Dumoulin, $https://github.com/vdumoulin/conv_arithmetic$

Padding and stride

Filter size= 3×3 , stride=2, no padding

Figures by V. Dumoulin, $https://github.com/vdumoulin/conv_arithmetic$

Convolutional sequence

Convolutional layer

- Filter weights and biases are learned !
- \blacktriangleright Filter size is much smaller than image size. Typically, $3\times3,\,5\times5,\,\ldots$
- Number of parameters independent from the width and height of the input feature maps.
- In practice, input feature maps have several features per pixel (depth is not necessarily 1) → 3D convolution.
- ► Example : filter size=k×k, nb input features (depth)=A, nb output features=B, total number of parameters of layer is (k×k×A+1)×B (+1 comes from the bias) → several orders of magnitude smaller than a fully connected layer.

Non-linear activation layer

- ▶ Very often, $\operatorname{ReLU}(x) = \max(0, x)$ is used
- Activation function is applied elementwise : for each output feature of each pixel
- No parameter to learn here

Convolutional sequence

Pooling layer

- \blacktriangleright Goal : reduce the **spatial** size of the feature map \rightarrow **downsampling**
- Number of output features B is unchanged, pooling is performed for each of these B features.
- No parameter to learn here
- Average or maximum taken over $p \times p$ squares of each feature map.
- Squares are usually non-overlapping : stride = p. Example : max pooling, p = 2

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

Size of feature maps

Example of a convolutional sequence with sizes of feature maps

Parameter initialization

What should not be done : all zero initialization

- If all neurons compute the same output, they will undergo the same parameter update.
- No source of difference between neurons if their weights are initialized to the same value.

Small random numbers

- Sample from a normal distribution (zero-mean, unit standard deviation).
- Problem with the above suggestion : the distribution of the outputs from a randomly initialized neuron has a variance that grows with the number of inputs.
- The variance of each neuron's output can be normalized to 1 by scaling its weight vector by the square root of its number of inputs

$$\mathbf{W} \sim \frac{1}{\sqrt{n}} \mathcal{N}(0, 1)$$

with n = number of input features.

Backpropagation through convolutional layer + activation layer

- Consider the following example : convolutional layer with a 2 × 2 mask with bias, stride=1, no padding.
- ▶ Non-linear activation *f*.
- ▶ Input feature map size = W × H, so output feature map size = (W − 1) × (H − 1)

• In the forward pass, each output $y_{i,j}$ is computed as

$$y_{i,j} = f(w_{1,1}x_{i,j} + w_{1,2}x_{i,j+1} + w_{2,1}x_{i+1,j} + w_{2,2}x_{i+1,j+1} + b)$$

= $f\left(b + \sum_{\substack{\lambda=1..2\\\gamma=1..2}} w_{\lambda,\gamma}x_{i+\lambda-1,j+\gamma-1}\right)$

- \blacktriangleright Each weight $w_{\lambda,\gamma}$ and the bias b takes part in the calculation of every $y_{i,j}$
- During the backward pass, assume that each $\frac{\partial \mathcal{L}}{\partial y_{i,j}}$ has just been computed (coming from the following pooling layer)

• For a given weight $w_{\lambda,\gamma}$:

$$\frac{\partial \mathcal{L}}{\partial w_{\lambda,\gamma}} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial y_{i,j}} \frac{\partial y_{i,j}}{\partial w_{\lambda,\gamma}}$$
$$= \sum_{i,j} \frac{\partial \mathcal{L}}{\partial y_{i,j}} x_{i+\lambda-1,j+\gamma-1} f' \left(b + \sum_{\substack{\lambda'=1..2\\\gamma'=1..2}} w_{\lambda',\gamma'} x_{i+\lambda'-1,j+\gamma'-1} \right)$$

► For the bias *b*,

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial y_{i,j}} \frac{\partial y_{i,j}}{\partial b}$$
$$= \sum_{i,j} \frac{\partial \mathcal{L}}{\partial y_{i,j}} f' \left(b + \sum_{\substack{\lambda'=1..2\\\gamma'=1..2}} w_{\lambda',\gamma'} x_{i+\lambda'-1,j+\gamma'-1} \right)$$

Backpropagation in pooling layer

- Max pooling, 2×2 , stride=2 (no overlap)
- ▶ Input feature map size = $W \times H$, so output feature map size = $\frac{W}{2} \times \frac{H}{2}$

 $y_{i,j} = \max \{ x_{2i-1,2j-1} , x_{2i-1,2j} , x_{2i,2j-1} , x_{2i,2j} \}$

$$= \max_{\substack{\lambda = -1..0\\\gamma = -1..0}} x_{2i+\lambda,2j+\gamma}$$

- During the backward pass, assume that each $\frac{\partial \mathcal{L}}{\partial y_{i',j'}}$ has just been computed (coming from the following convolutional layer)
- ► The max function is not differentiable BUT...
- ► ... there's a trick : during the forward pass, store, for each y_{i',j'}, the position in feature map x which led to the maximum :

$$(\lambda^*, \gamma^*) = \operatorname*{argmax}_{\substack{\lambda = -1..0\\\gamma = -1..0}} x_{2i'+\lambda, 2j'+\gamma}$$

▶ A given input $x_{i,j}$ takes part in the computation of $y_{i',j'}$, where $i' = \lfloor (i-1)/2 \rfloor + 1$ and $j' = \lfloor (j-1)/2 \rfloor + 1$. Hence,

$$\frac{\partial \mathcal{L}}{\partial x_{i,j}} \leftarrow \left\{ \begin{array}{ll} \frac{\partial \mathcal{L}}{\partial y_{i',j'}} & \text{if } i = 2i' + \lambda^*, j = 2j' + \gamma^* \\ 0 & \text{otherwise} \end{array} \right.$$

Example : during forward pass, x_{1,2} has the maximum value among {x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}}
During backward pass, ∂L/∂y_{1,1} is backpropagated to ∂L/∂x_{1,2}
The other ∂L/∂x_{i,i} are set to 0

 $x_{i,j}$

Regularization : parameter norm penalties

- The goal of regularization is to prevent overfitting (limit generalization error).
- First technique : add a regularization term (some norm over the vector of parameters) in the cost function

$$\mathcal{C}(heta) = \sum_{i=1}^{N} \mathcal{L}(\mathcal{M}(oldsymbol{x}_i; heta), oldsymbol{y}_i) {+} oldsymbol{\lambda} \left\| oldsymbol{ heta}
ight\|$$

where λ is a hyperparameter.

- \blacktriangleright For neural networks, $\|\theta\|$ penalizes only the weights, and leave the biases
- L^2 norm (the most common form of regularization) \rightarrow encourages the network to use all of its inputs a little, rather than some of its inputs a lot
- L^1 norm \rightarrow leads the weight vectors to become **sparse** during optimization

Regularization : data augmentation

- Train on more data ! Of course, in practice, the amount of data is limited.
- Create "fake" data and add it to the training set

Data augmentation by affine transformation :

 Another possibility is data augmentation by injecting noise in the inputs

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Outline

Introduction

Convolutional networks

Reminder : neural networks Convolutional neural networks Architecture of convolutional layers Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

The ImageNet dataset

 The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at large scale.

AlexNet

- Won the ILSVRC 2012 challenge
- [A. Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012]

AlexNet : Local response normalization (LRN)

- Not used much in other architectures...
- In neurobiology, "lateral inhibition" = capacity of an excited neuron to subdue its neighbors.
- ► Favors detection of high frequency features with a large response.
- If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.
- Useful with ReLU activations, which are unbounded.
- LRN will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them.

AlexNet : Local response normalization (LRN)

- Normalization is performed across filters of the same convolutional layer (after ReLU activation).
- At a fixed spatial position (i, j) :

$$y_{i,j}^{k} = \frac{x_{i,j}^{k}}{\left(\alpha_{1} + \alpha_{2} \sum_{\lambda=k-n/2}^{k+n/2} \left(x_{i,j}^{\lambda}\right)^{2}\right)^{\beta}}$$

- x^k_{i,j} = the kth input feature to the LRN layer (output of the kth filter of the previous convolutional layer, after ReLU activation).
 y^k_{i,j} = the kth output of the LRN layer.
- n = size of neighborhood (= set of neighboring filters) (λ − n/2 and λ + n/2 are bounded between 0 and N − 1, where N is the number of filters).
- α_1 , α_2 , β , n are hyperparameters.
- No parameter to learn here.

AlexNet in detail

- Input : $224 \times 224 \times 3$ input images
- ► 1st Convolutional layer : 96 filters of size 11 × 11 × 3 (stride = 4, no padding) → 55 × 55 × 96 feature maps
- ReLU
- Max-pooling layer : 3×3 (stride = 2) $\rightarrow 27 \times 27 \times 96$ feature maps
- Local Response Normalization
- ► 2nd Convolutional layer : 256 filters of size 5 × 5 × 48 (stride = 1, padding=2) → 27 × 27 × 256 feature maps
- ReLU
- Max-pooling layer : 3×3 (stride = 2) $\rightarrow 13 \times 13 \times 256$ feature maps
- Local Response Normalization

AlexNet in detail

- Srd Convolutional layer : 384 filters of size 3 × 3 × 256 (stride = 1, padding=1) → 13 × 13 × 384 feature maps
- ▶ 4th Convolutional layer : 384 filters of size $13 \times 13 \times 192$ (stride = 1, padding=1) $\rightarrow 13 \times 13 \times 384$ feature maps
- ► 5th Convolutional layer : 256 filters of size 3 × 3 × 192 (stride = 1, padding=1) → 13 × 13 × 256 feature maps
- Max-pooling layer : 3×3 (stride = 2) $\rightarrow 6 \times 6 \times 256$ feature maps
- ▶ 1st Fully connected layer : 4096 neurons
- ► 2nd Fully connected layer : 4096 neurons
- ► 3st Fully connected layer : 1000 neurons
- In total, there are 60 million parameters need to be trained !

Use of pretrained models

- Training a model on ImageNet from scratch takes days or weeks.
- Many models trained on ImageNet and their weights are publicly available !
- We can perform fine-tuning for transfer learning
- Retraining the/some parameters of the network (given enough data)
- Truncate the last layer(s) of the pre-trained network
- Train a classification model from these features on a new classification task (early layers are frozen, only late layers are trained)

Outline

Introduction

Convolutional networks

Reminder : neural networks Convolutional neural networks Architecture of convolutional layers Training ConvNets Example of successful architecture : AlexNet

Recurrent neural networks

Neurons for sequential data Backpropagation throuth time NLP with RNN

Outline

Introduction

Convolutional networks

Architecture of convolutional layers Training ConvNets

Recurrent neural networks

Neurons for sequential data

Backpropagation throuth time NLP with RNN

Why recurrent neural networks?

Feedforward neural networks

- All input values of a given sample are considered independent of each other.
- When processing sequential data, values at different time steps would also be considered independent → does not take advantage of time coherence !
- ► Cannot handle variable-length sequential data, *e.g* sentences.

Recurrent neural networks

- Make use of sequential information
- Output is made dependent on previous computations
- Recurrent neurons have a memory = internal hidden state
- Can handle variable-length sequences

Sequential data

- Let $\mathbf{X} = (\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_T)$ be a sequence of T vectors of size D
- Processing sequential data is roughly equivalent to predict what comes next :

$$p(\mathbf{X}) = \prod_{t=1}^{T} p(\boldsymbol{x}_t | \boldsymbol{x}_1, ..., \boldsymbol{x}_{t-1})$$

- Examples of sequential data :
 - ▶ Sound wave : D = 1 (mono) or D = 2 (stereo)

Sequential data

- Sentences : sequence of words
- Initial encoding of words : 1-of-V vectors, where V is the size of vocabulary (huge!)

The	man	is	wearing	а	hat
0	1	0	0	0	0
÷	0	1	÷	÷	÷
0	÷	0	÷	1	÷
1	÷	÷	0	0	÷
0	÷	÷	1	÷	0
÷	÷	÷	0	÷	1
0	0	0	0	÷	0

Words are re-encoded in a space of smaller dimension (embedding)

Recurrent neurons

- A recurrent layer of neurons (input and output are vectors !) :
 - $\boldsymbol{x} = \mathsf{input} \mathsf{ vector} \mathsf{ of size } D$
 - y = output vector of size K
 - $\mathbf{h} = \mathsf{hidden} \mathsf{ state} \mathsf{ vector} \mathsf{ of} \mathsf{ size} H$
 - $\mathbf{U} = H \times D$ weight matrix
 - $\mathbf{V} = K \times H$ weight matrix
 - $\mathbf{W} = H \times H$ weight matrix

The hidden state are the "memory" of the neuron. It is calculated based on the previous hidden state and the current input :

$$\mathbf{h}_t = f_1(\mathbf{U}\boldsymbol{x}_t + \mathbf{W}\mathbf{h}_{t-1})$$

The output is calculated based on the hidden state :

$$\boldsymbol{y}_t = f_2(\mathbf{V}\mathbf{h}_t)$$
 65

- The hidden state captures information about what happened in all the previous time steps (in practice, it typically cannot capture information from too many time steps ago)
- Unlike a traditional deep neural network, which uses different parameters at each layer, a RNN shares the same parameters (U, V, W above) across all time steps
- We are performing the same task at each step, just with different inputs. This greatly reduces the total number of parameters we need to learn.

Recurrent neurons

> The same reccurent layer, **unfolded** in time :

Outline

Introduction

Convolutional networks

Architecture of convolutional layers Training ConvNets

Recurrent neural networks

Neurons for sequential data Backpropagation throuth time NLP with RNN

► The full sequence is one training sample → the loss for one sample is the sum of the losses at each time step.

$$\mathcal{L}(oldsymbol{y},\overline{oldsymbol{y}}) = \sum_{t=1}^T \mathcal{L}(oldsymbol{y}_t,\overline{oldsymbol{y}}_t)$$

where \overline{y} is the desired output (label) (sample index *i* is dropped for convenience)

- Let \mathcal{L}_t be a shortened notation for $\mathcal{L}(\boldsymbol{y}_t, \overline{\boldsymbol{y}}_t)$.
- To train the recurrent layer, we should compute $\frac{\partial \mathcal{L}_t}{\partial \mathbf{U}}$, $\frac{\partial \mathcal{L}_t}{\partial \mathbf{V}}$ and $\frac{\partial \mathcal{L}_t}{\partial \mathbf{W}}$ for every t
- ► We are differentiating real numbers and vectors with respect to vectors and matrices ! → matrix calculus

- ▶ From now on, we will reason on a single recurrent neuron with D = 1, K = 1, H = 1.
- Input x_t , output y_t and hidden state h_t are scalars.
- ▶ Weights *u*, *v*, *w* are scalars too.

$$h_t = f_1(ux_t + wh_{t-1})$$

$$y_t = f_2(vh_t)$$

For v, we have the easy relation

$$\frac{\partial \mathcal{L}_t}{\partial v} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial v} = \frac{\partial \mathcal{L}_t}{\partial y_t} h_t f_2'(vh_t)$$

▶ For *w*, we have the following **recurrent** relation :

$$\frac{\partial \mathcal{L}_t}{\partial w} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial w} \\ = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial h_t}{\partial w} v f_2'(vh_t)$$

with

$$\frac{\partial h_t}{\partial w} = \frac{\partial}{\partial w} \left\{ f_1(ux_t + wh_{t-1}) \right\}$$
$$= \left(h_{t-1} + w \frac{\partial h_{t-1}}{\partial w} \right) f'_1(ux_t + wh_{t-1})$$
$$= \dots$$
$$\frac{\partial h_0}{\partial w}$$

• Recurrence stops as $\frac{\partial h_0}{\partial w} = 0.$

▶ Similarly, for *u*, we have the following **recurrent** relation :

$$\frac{\partial \mathcal{L}_t}{\partial u} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial u} \\ = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial h_t}{\partial u} v f_2'(vh_t)$$

with

$$\frac{\partial h_t}{\partial u} = \frac{\partial}{\partial u} \left\{ f_1(ux_t + wh_{t-1}) \right\}$$
$$= \left(x_t + w \frac{\partial h_{t-1}}{\partial u} \right) f'_1(ux_t + wh_{t-1})$$
$$= \dots$$

• Recurrence stops as $\frac{\partial h_0}{\partial u} = 0.$

• Backpropagation through time for a given loss at time step t = 3:

Outline

Introduction

Convolutional networks

Architecture of convolutional layers Training ConvNets

Recurrent neural networks

Neurons for sequential data Backpropagation throuth time NLP with RNN

Neural Language Processing

- Possible tasks in Neural Language Processing (NLP) : neural machine translation (NMT), visual question answering, chatbots, ...
- A recurrent neural network learns a language model, assigning a probability to a sequence of words
- Plausible sequences have higher probabilities :

 $\begin{array}{l} p(\text{``I like cats''}) > p(\text{'`I table cats''}) \\ p(\text{'`I like cats''}) > p(\text{''like I cats''}) \end{array}$

- ► Words are initially represented as 1-of-V vectors → vocabulary size V is huge !
- ► For NLP, inputs of recurrent neural networks are embeddings

Word embeddings

 \blacktriangleright Word embeddings have a size much smaller than V

 $\blacktriangleright \text{ Example}: \begin{array}{l} \text{Apple}: [1.11, 2.24, 7.88] \\ \text{Orange}: [1.01, 2.04, 7.22] \\ \text{Car}: [8.41, 2.34, -1.28] \\ \text{Table}: [-1.41, 7.34, 3.01] \end{array}$

- Embeddings are different (e.g. in terms of Euclidean distance) if corresponding words are semantically different
- Initial sequence : $(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, ... \boldsymbol{\omega}_T)$
- Sentence fed as input to the RNN : $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, ... \boldsymbol{x}_T),$ with

$$oldsymbol{x}_t = \mathbf{E}oldsymbol{\omega}_t$$

where \mathbf{E} is the **embedding** operator (projection)

Language modeling

- Input : sequence $(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, ... \boldsymbol{\omega}_T)$
- Output : shifted sequence $(\boldsymbol{\omega}_2, \boldsymbol{\omega}_3, ... \boldsymbol{\omega}_{T+1})$

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass

Language modeling

- Neural machine translation (NMT)
- The hidden state at the last iteration encodes the memory for the entire sentence

Conclusion

Deep learning models

- are powerful, for many many tasks!
- need A LOT of annotated data,
- move the problem of feature engineering to architecture engineering

Forthcoming challenges

- Explainability of learnt features
- Make architectures less time and memory-consuming (decrease the number of layers/parameters without performance loss)
- Public debate on algorithms, artificial intelligence, ethics... (what Al can do, what it cannot do, what it should not be used for...)