
Introduction to Deep Learning

Julien Mille

INSA Centre Val de Loire - Département GSI, 5A, option ACAD

Université de Tours - Master BDMA

Laboratoire d’Informatique Fondamentale
et Appliquée de Tours (LIFAT)

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

2

Introduction

What is Deep Learning ?

I A kind of statistical machine learning algorithms

I Good old Neural Networks, with more layers/modules

I Non-linear, hierarchical, abstract representations of data

I Flexible models with any input/output type and size

I Differentiable functional programming (automatic differentiation)

3

Introduction

I “Classical” learning systems

Figure by A. Erdem
4

Introduction

I “Classifical” learning system

I Deep learning system

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
5

Introduction

Why Deep Learning now ?

deep learning

other learning
algorithms

amount of data

p
e
rf

o
rm

a
n
ce

Computing power (GPUs) Labeled datasets

Open source frameworks

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
6

Introduction

I Deep Learning in Vision

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
7

Introduction

I Deep Learning in speech processing

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
8

Introduction
I Deep Learning in games

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
9

Introduction

I Learning a hierarchy of increasingly abstract representations

Figure by Y.Lecun and M.A. Ranzato
10

Introduction

Deep Learning → End-to-End learning

I A hierarchy of trainable feature transforms.

I Each module transforms its input representation into a higher-level
one.

I Low-level features are shared among categories.

I As the level increases, features are increasingly global and invariant.

Figure by Y.Lecun and M.A. Ranzato
11

Introduction

”Shallow” vs Deep Learning

I ”Shallow” models

I ”Deep” models

Figures by Y.Lecun and M.A. Ranzato
12

Introduction

I Real data examples for a given task are usually not spreaded
everywhere in input space, but rather clustered on a low-dimension
”manifold”, also referred to as latent space.

I Example : images of faces, of size 200× 200 → each sample in the
input space is a vector in R40000

I But the number of features (degrees of freedom) leading to plausible
images of faces is much smaller : orientation, lighting, positions of
face elements, shapes, skin color, hair type, etc.

Figures by G.Perarneau et al
13

Introduction

Why features should be learnt ?

I There is a lot of redundancy in the input space.

I A simple fact : in images, neighboring pixels very often look the
same.

I There is much less redundancy in the latent space.

I Learning features lets the system decide itself how to deal with this
redundancy.

14

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

15

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

16

A single neuron

I A single neuron

x

x1
x2

xD

w1

wD

b

a
y

I Weighted sum of inputs plus bias : a = wTx+ b = b+
D∑
j=1

wjxj

I Output of neuron : activation function applied to a :
y = f(a) = f(wTx+ b)

17

A single layer of neurons

x1
x2

xD
x

w1,1

wK,1

wK,D

w1,D

b1

bK

a

a1
a2

aK

y

y1
y2

yK

I D inputs, K neurons (inputs, outputs and biases are column vectors)

I W = weight matrix of size K ×D, b = bias vector of size K

I a = Wx+ b

I Output of layer : activation function f applied element-wise to a :

y = f(a) = [f(a1) · · · f(aK)]T

I Each input is connected to each output : known as dense or
fully-connected layer 18

Common activation functions
Element-wise activation functions :

I Identity : f(a) = a
I Sigmoid :

I Logistic function : f(a) =
1

1 + e−a (often referred to as the sigmoid)

I Hyperbolic tangent : f(a) = tanh(a)
I Arctangent : f(a) = arctan(a)

I ReLU (Rectified Linear Unit) : f(a) = max(0, a)

The softmax function
I A.k.a normalized exponential
I Outputs a vector whose components sum to 1 :

softmax(a) =
1

K∑
j=1

eaj

 ea1

...
eaK

I Usually, used for 1-of-K representation (one-hot encoding) in the

last layer of neural-network based classifier. 19

The 3 sets of supervised learning

Training set

I For fitting the parameters of the model (for neural networks :
weights and biases)

I Should not overfit !

Validation set (not always used)

I For adjusting the hyperparameters of the model (for neural
networks, this can be the size of hidden layers)

I Can be used for regularization

Test set

I Used to provide an unbiased evaluation of a final model which was
fit on the training dataset

I Follows the same probability distribution than training set

I Evaluate generalization ability of model (handling samples which
were never seen during training)

20

Classification and loss

I We have a training set (xi,yi)i=1...N . Each xi is a feature vector
of size D. Each yi is the desired output (label) of size K.

I For a classification task, K is the number of classes, and yi is a
1-of-K encoding of the label of the ith sample.

I The loss function measures, for a given sample, the discrepancy
between the output of the model (the neural network) and the label.
Common loss functions (p,q ∈ RK) :

I Mean squared error : L(p,q) = 1

K
‖p− q‖2

I Mean absolute error : L(p,q) = 1

K

K∑
j=1

|pj − qj |

I Cross-entropy (negative log-likelihood) loss (for pj and qj between 0

and 1) : L(p,q) = −
K∑
j=1

qj log pj

21

Cost minimization

I The parameters of the model M are represented by vector θ.

I The output of the model for a given sample is denoted by M(xi; θ).

I The total cost function (= error) is the sum of losses on the entire
training set.

I Training the model = iteratively modify parameters θ in order to
minimize the cost function :

C(θ) =
N∑
i=1

L(M(xi; θ),yi)

I The cost function is differentiable with respect to each parameter.
When the learning procedure has converged to a local minimum,
we should have, ideally :

dC
dθ

= 0

22

Confusion matrix
I At test time, one wishes the cost function to be small on the test set
I In addition, one often wishes to know in which class the errors are
→ generate a confusion matrix (a row = an actual class, a column
= a predicted class)

23

Backpropagation

I Minimization of the cost function by gradient descent : at a given
iteration t, for each parameter θj in θ,

θt+1
j ← θtj − α

∂C
∂θj

,

where α is the learning rate.

I Backpropagation : parameters (weights and biases) are updated by
descending order of layer.

I Let wi,j,l be the weight corresponding to input j and output i in

layer l. Derivative
∂C

∂wi,j,l
depends on

∂C
∂w·,·,l+1

→ chain rule of

derivation.

I Forward pass : feed a sample at the input of the network, compute
activation and output for each neuron in ascending order of layer.

I Backward pass : evaluate derivative of cost function for parameters
and update these parameters, for each neuron in descending order of
layer. 24

Backpropagation

I Forward pass : feed a sample at the input of the network, compute
activation and output for each neuron in ascending order of layer.

I Backward pass : evaluate derivative of cost function for parameters
and update these parameters, for each neuron in descending order of
layer.

25

Batch vs stochastic gradient descent

I Batch gradient descent = average
∂L(M(xi; θ),yi)

∂θj
over all

samples xi to update each θj → Computationally expensive !

θt+1
j ← θtj −

α

N

N∑
i=1

∂L(M(xi; θ),yi)

∂θj
.

I Stochastic gradient descent = randomly shuffle training samples,
pick a sample xi and update each θj :

θt+1
j ← θtj − α

∂L(M(xi; θ),yi)

∂θj
.

I Stochastic minibatch gradient descent = randomly shuffle samples,
pick a small subset of samples and update each θj with derivatives
averaged over this small subset.

26

Training a model

I The cost function is non-convex → has many local minima

I Gradient descent converges to a local minimum (we hope that it is
a good one !)

I Dependence on initialization (typically, weights are randomly drawn
from a zero-mean normal distribution. Biases are set to 0)

I Different sets of parameters can lead to the same classification

I An epoch is one pass of gradient descent (batch, stochastic or
minibatch) over the whole training set

I Training usually needs a large number of epochs

27

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

28

ConvNets : introduction

I Introduced in late 1990s by Yann Lecun et al for digit recognition

The LeNet5 network

29

ConvNets : introduction
I Introduced in late 1990s by Yann Lecun et al for digit recognition

The MNIST dataset 30

Why ConvNets ?

I For a fully connected layer of input size N and output size M , the
number of parameters to learn is N(M + 1).

I If a full image was flattened and fed into a fully-connected layer of
neurons...

I For a small image size, say 200× 200, and 50 neurons in the layer,
200× 200× 51 parameters to learn, for a single layer →too many
parameters.

I Spatial layout would be destroyed.

I Conversely, ConvNets gradually decrease image size, and gradually
increase feature vector size → spatial layout is progressively encoded
into the successive layers.

31

A convolutional sequence

I Input = feature maps (or input image) of size W ×H ×D.

I Output = features maps of size W ′ ×H ′ ×D′ (usually, W ′ ≤W
and H ′ ≤ H and D′ ≥ D).

I A convolutional sequence is made up of three layers :
I A convolutional layer.
I A non-linear activation layer (sigmoid, tanh, arctan, ReLU, ...).
I A pooling layer (average, max, ...).

I Can handle variable-sized input

Convolutional sequence

Non-linear
activation

Input
to layer

Convolutional
layer

Pooling
layer

Output to next
conv. layer

32

A full ConvNet

I Usually, one or two fully-connected (dense) layer(s) after a sequence
of convolutional groups.

I If the goal is classification, the softmax function is chosen as
activation in the last layer : desired outputs are 1-of-K encoding of
class labels (outputs sum to 1)

... Dense
layer

Dense
layer

Input
image

Output
class

Conv.
seq. 1

Conv.
seq. 2

Conv.
seq. n

33

Convolution (reminder ?)

I Mathematically speaking, in a continuous space setting, the
convolution product between two functions f : D 7→ R
and g : D 7→ R, is another function defined by

(f ∗ g)(p) =
∫
D
f(p− y)g(y)dy

I Properties : bilinear, associative and commutative

I In a discrete 2D setting, the convolution between an image f and a
filter (or mask) g (of size K × L) outputs a new image h, such that

h[x, y] =

K−1∑
i=0

L−1∑
j=0

f

[
x− i+ K

2
, y − j + L

2

]
g[i, j]

I Filter is usually centered → K and L are odd

34

Cross-correlation

I What is actually done in a convolutional layer is known as
cross-correlation = convolution without flipping the mask :

h[x, y] =

K−1∑
i=0

L−1∑
j=0

f

[
x+i− K

2
, y+j − L

2

]
g[i, j]

I Each pixel value in the output image is a weighted sum of
neighboring pixel values in the input image

I Numerical example (3× 3 mask) :

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

12 12 17

10 17 19

9 6 14

Input image

Mask Output image

35

Convolution
I Filter is slided over the image : the same weights are applied on

overlapping areas
I Numerical example :

I Input image size W ×H, mask size=K ×L. If no padding is applied
(and stride=1), output image size=(W −K + 1)× (H − L+ 1)

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
36

Padding and stride

I Filter size=3× 3, stride=1, no padding

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
37

Padding and stride
I Filter size=3× 3, stride=1, horizontal padding=1, vertical

padding=1

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
38

Padding and stride

I Filter size=3× 3, stride=2, no padding

Figures by V. Dumoulin, https://github.com/vdumoulin/conv arithmetic
39

Convolutional sequence
Convolutional layer

I Filter weights and biases are learned !

I Filter size is much smaller than image size. Typically, 3× 3, 5× 5, ...

I Number of parameters independent from the width and height of
the input feature maps.

I In practice, input feature maps have several features per pixel (depth
is not necessarily 1) → 3D convolution.

I Example : filter size=k× k, nb input features (depth)=A, nb output
features=B, total number of parameters of layer is
(k × k ×A+ 1)×B (+1 comes from the bias) → several orders of
magnitude smaller than a fully connected layer.

Non-linear activation layer

I Very often, ReLU(x) = max(0, x) is used

I Activation function is applied elementwise : for each output feature
of each pixel

I No parameter to learn here 40

Convolutional sequence

Pooling layer

I Goal : reduce the spatial size of the feature map → downsampling

I Number of output features B is unchanged, pooling is performed for
each of these B features.

I No parameter to learn here

I Average or maximum taken over p× p squares of each feature map.

I Squares are usually non-overlapping : stride = p. Example : max
pooling, p = 2

41

Size of feature maps

I Example of a convolutional sequence with sizes of feature maps

32x32x3

28x28x7

28x28x7
14x14x7

Convolution, 7 filters, size 5x5
No padding, stride=1

ReLU activation

Max pooling
size 2x2
stride=2

42

Parameter initialization
What should not be done : all zero initialization

I If all neurons compute the same output, they will undergo the same
parameter update.

I No source of difference between neurons if their weights are
initialized to the same value.

Small random numbers

I Sample from a normal distribution (zero-mean, unit standard
deviation).

I Problem with the above suggestion : the distribution of the outputs
from a randomly initialized neuron has a variance that grows with
the number of inputs.

I The variance of each neuron’s output can be normalized to 1 by
scaling its weight vector by the square root of its number of inputs

W ∼ 1√
n
N (0, 1)

with n = number of input features. 43

Backpropagation

Backpropagation through convolutional layer + activation layer

I Consider the following example : convolutional layer with a 2× 2
mask with bias, stride=1, no padding.

I Non-linear activation f .

I Input feature map size = W ×H, so output feature map size =
(W − 1)× (H − 1)

x1,1 x1,2 x1,W

x2,1 x2,2 x2,W

xH,1xH,2 xH,W

w1,1 w1,2

w2,1 w2,2

+b

f

y1,1 y1,2 y1,W−1

y2,1 y2,2 y2,W−1

yH−1,1yH−1,2 yH−1,W−1

∗

44

Backpropagation

I In the forward pass, each output yi,j is computed as

yi,j = f(w1,1xi,j + w1,2xi,j+1 + w2,1xi+1,j + w2,2xi+1,j+1 + b)

= f

b+ ∑
λ=1..2
γ=1..2

wλ,γxi+λ−1,j+γ−1

I Each weight wλ,γ and the bias b takes part in the calculation of

every yi,j

I During the backward pass, assume that each
∂L
∂yi,j

has just been

computed (coming from the following pooling layer)

45

Backpropagation

I For a given weight wλ,γ :

∂L
∂wλ,γ

=
∑
i,j

∂L
∂yi,j

∂yi,j
∂wλ,γ

=
∑
i,j

∂L
∂yi,j

xi+λ−1,j+γ−1f
′

b+ ∑
λ′=1..2
γ′=1..2

wλ′,γ′xi+λ′−1,j+γ′−1

I For the bias b,

∂L
∂b

=
∑
i,j

∂L
∂yi,j

∂yi,j
∂b

=
∑
i,j

∂L
∂yi,j

f ′

b+ ∑
λ′=1..2
γ′=1..2

wλ′,γ′xi+λ′−1,j+γ′−1

46

Backpropagation

Backpropagation in pooling layer

I Max pooling, 2× 2, stride=2 (no overlap)

I Input feature map size = W ×H, so output feature map size =
W

2
× H

2

x1,1 x1,2

x2,1 x2,2

max

y1,1

yi,j = max {x2i−1,2j−1 , x2i−1,2j , x2i,2j−1 , x2i,2j}
= max

λ=−1..0
γ=−1..0

x2i+λ,2j+γ

47

Backpropagation

I During the backward pass, assume that each
∂L
∂yi′,j′

has just been

computed (coming from the following convolutional layer)

I The max function is not differentiable BUT...

I ... there’s a trick : during the forward pass, store, for each yi′,j′ , the
position in feature map x which led to the maximum :

(λ∗, γ∗) = argmax
λ=−1..0
γ=−1..0

x2i′+λ,2j′+γ

I A given input xi,j takes part in the computation of yi′,j′ ,
where i′ = b(i− 1)/2c+ 1 and j′ = b(j − 1)/2c+ 1. Hence,

∂L
∂xi,j

←

∂L
∂yi′,j′

if i = 2i′ + λ∗, j = 2j′ + γ∗

0 otherwise

48

Backpropagation
I Example : during forward pass, x1,2 has the maximum value among
{x1,1 , x1,2 , x2,1 , x2,2}

I During backward pass,
∂L
∂y1,1

is backpropagated to
∂L
∂x1,2

I The other
∂L
∂xi,j

are set to 0

1.2 7.4

0.3 3.8

max 7.4

0 −0.8

0 0
−0.8

xi,j

yi′,j′

∂L
∂xi,j

∂L
∂yi′,j′ 49

Regularization : parameter norm penalties

I The goal of regularization is to prevent overfitting (limit
generalization error).

I First technique : add a regularization term (some norm over the
vector of parameters) in the cost function

C(θ) =
N∑
i=1

L(M(xi; θ),yi)+λ ‖θ‖

where λ is a hyperparameter.

I For neural networks, ‖θ‖ penalizes only the weights, and leave the
biases

I L2 norm (the most common form of regularization) → encourages
the network to use all of its inputs a little, rather than some of its
inputs a lot

I L1 norm → leads the weight vectors to become sparse during
optimization 50

Regularization : data augmentation

I Train on more data ! Of course, in practice, the amount of data is
limited.

I Create “fake” data and add it to the training set

I Data augmentation by affine transformation :

I Another possibility is data augmentation by injecting noise in the
inputs

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
51

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks

52

The ImageNet dataset

I The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
evaluates algorithms for object detection and image classification at
large scale.

53

AlexNet

I Won the ILSVRC 2012 challenge

I [A. Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. NIPS 2012]

54

AlexNet : Local response normalization (LRN)

I Not used much in other architectures...

I In neurobiology, “lateral inhibition” = capacity of an excited neuron
to subdue its neighbors.

I Favors detection of high frequency features with a large response.

I If we normalize around the local neighborhood of the excited neuron,
it becomes even more sensitive as compared to its neighbors.

I Useful with ReLU activations, which are unbounded.

I LRN will dampen the responses that are uniformly large in any given
local neighborhood. If all the values are large, then normalizing
those values will diminish all of them.

55

AlexNet : Local response normalization (LRN)

I Normalization is performed across filters of the same convolutional
layer (after ReLU activation).

I At a fixed spatial position (i, j) :

yki,j =
xki,jα1 + α2

k+n/2∑
λ=k−n/2

(
xλi,j

)2β

I xki,j = the kth input feature to the LRN layer (output of the kth

filter of the previous convolutional layer, after ReLU activation).

I yki,j = the kth output of the LRN layer.

I n = size of neighborhood (= set of neighboring filters) (λ− n/2
and λ+ n/2 are bounded between 0 and N − 1, where N is the
number of filters).

I α1, α2, β, n are hyperparameters.

I No parameter to learn here. 56

AlexNet in detail

I Input : 224× 224× 3 input images

I 1st Convolutional layer : 96 filters of size 11× 11× 3 (stride = 4, no
padding) → 55× 55× 96 feature maps

I ReLU

I Max-pooling layer : 3× 3 (stride = 2) → 27× 27× 96 feature maps

I Local Response Normalization

I 2nd Convolutional layer : 256 filters of size 5× 5× 48 (stride = 1,
padding=2) → 27× 27× 256 feature maps

I ReLU

I Max-pooling layer : 3× 3 (stride = 2) → 13× 13× 256 feature maps

I Local Response Normalization

57

AlexNet in detail

I 3rd Convolutional layer : 384 filters of size 3× 3× 256 (stride = 1,
padding=1) → 13× 13× 384 feature maps

I 4th Convolutional layer : 384 filters of size 13× 13× 192 (stride =
1, padding=1) → 13× 13× 384 feature maps

I 5th Convolutional layer : 256 filters of size 3× 3× 192 (stride = 1,
padding=1) → 13× 13× 256 feature maps

I Max-pooling layer : 3× 3 (stride = 2) → 6× 6× 256 feature maps

I 1st Fully connected layer : 4096 neurons

I 2nd Fully connected layer : 4096 neurons

I 3st Fully connected layer : 1000 neurons

I In total, there are 60 million parameters need to be trained !

58

Use of pretrained models

I Training a model on ImageNet from scratch takes days or weeks.

I Many models trained on ImageNet and their weights are publicly
available !

I We can perform fine-tuning for transfer learning

I Retraining the/some parameters of the network (given enough data)

I Truncate the last layer(s) of the pre-trained network

I Train a classification model from these features on a new
classification task (early layers are frozen, only late layers are trained)

59

Outline

Introduction

Convolutional networks
Reminder : neural networks
Convolutional neural networks

Architecture of convolutional layers
Training ConvNets

Example of successful architecture : AlexNet

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

60

Outline

Introduction

Convolutional networks
Architecture of convolutional layers
Training ConvNets

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

61

Why recurrent neural networks ?

Feedforward neural networks

I All input values of a given sample are considered independent of
each other.

I When processing sequential data, values at different time steps
would also be considered independent → does not take advantage of
time coherence !

I Cannot handle variable-length sequential data, e.g sentences.

Recurrent neural networks

I Make use of sequential information

I Output is made dependent on previous computations

I Recurrent neurons have a memory = internal hidden state

I Can handle variable-length sequences

62

Sequential data
I Let X = (x1,x2, ...,xT) be a sequence of T vectors of size D
I Processing sequential data is roughly equivalent to predict what

comes next :

p(X) =

T∏
t=1

p(xt|x1, ...,xt−1)

I Examples of sequential data :
I Sound wave : D = 1 (mono) or D = 2 (stereo)

63

Sequential data

I Sentences : sequence of words

I Initial encoding of words : 1-of-V vectors, where V is the size of
vocabulary (huge !)

The man is wearing a hat
0 1 0 0 0 0
... 0 1

...
...

...

0
... 0

... 1
...

1
...

... 0 0
...

0
...

... 1
... 0

...
...

... 0
... 1

0 0 0 0
... 0

I Words are re-encoded in a space of smaller dimension (embedding)

64

Recurrent neurons
I A recurrent layer of neurons (input and output are vectors !) :

I x = input vector of size D

I y = output vector of size K

I h = hidden state vector of size H

I U = H ×D weight matrix

I V = K ×H weight matrix

I W = H ×H weight matrix

x

W

U

V

y

h

I The hidden state are the “memory” of the neuron. It is calculated
based on the previous hidden state and the current input :

ht = f1(Uxt +Wht−1)

I The output is calculated based on the hidden state :

yt = f2(Vht) 65

Recurrent neurons

I The hidden state captures information about what happened in all
the previous time steps (in practice, it typically cannot capture
information from too many time steps ago)

I Unlike a traditional deep neural network, which uses different
parameters at each layer, a RNN shares the same parameters (U,
V, W above) across all time steps

I We are performing the same task at each step, just with different
inputs. This greatly reduces the total number of parameters we need
to learn.

66

Recurrent neurons

I The same reccurent layer, unfolded in time :

xt−1 xt xt+1

yt−1 yt yt+1

ht−1 ht ht+1

U U U

V VV

W W W

67

Outline

Introduction

Convolutional networks
Architecture of convolutional layers
Training ConvNets

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

68

Backpropagation through time (BPTT)

I The full sequence is one training sample → the loss for one sample
is the sum of the losses at each time step.

L(y,y) =
T∑
t=1

L(yt,yt)

where y is the desired output (label) (sample index i is dropped for
convenience)

I Let Lt be a shortened notation for L(yt,yt).

I To train the recurrent layer, we should compute
∂Lt
∂U

,
∂Lt
∂V

and
∂Lt
∂W

for every t

I We are differentiating real numbers and vectors with respect to
vectors and matrices ! → matrix calculus

69

Backpropagation through time (BPTT)

I From now on, we will reason on a single recurrent neuron
with D = 1, K = 1, H = 1.

I Input xt, output yt and hidden state ht are scalars.

I Weights u, v, w are scalars too.

ht = f1(uxt + wht−1)
yt = f2(vht)

I For v, we have the easy relation

∂Lt
∂v

=
∂Lt
∂yt

∂yt
∂v

=
∂Lt
∂yt

htf
′
2(vht)

70

Backpropagation through time (BPTT)

I For w, we have the following recurrent relation :

∂Lt
∂w

=
∂Lt
∂yt

∂yt
∂w

=
∂Lt
∂yt

∂ht
∂w

vf ′2(vht)

with
∂ht
∂w

=
∂

∂w

{
f1(uxt + wht−1)

}
=

(
ht−1 + w

∂ht−1
∂w

)
f ′1(uxt + wht−1)

= ...

I Recurrence stops as
∂h0
∂w

= 0.

71

Backpropagation through time (BPTT)

I Similarly, for u, we have the following recurrent relation :

∂Lt
∂u

=
∂Lt
∂yt

∂yt
∂u

=
∂Lt
∂yt

∂ht
∂u

vf ′2(vht)

with
∂ht
∂u

=
∂

∂u

{
f1(uxt + wht−1)

}
=

(
xt + w

∂ht−1
∂u

)
f ′1(uxt + wht−1)

= ...

I Recurrence stops as
∂h0
∂u

= 0.

72

Backpropagation through time (BPTT)

I Backpropagation through time for a given loss at time step t = 3 :

x1 x2 x3

y1 y2 y3

∂L3
∂y3

∂L3

∂h0

∂L3

∂h1

∂L3

∂h2

h0

h1 h2 h3

73

Outline

Introduction

Convolutional networks
Architecture of convolutional layers
Training ConvNets

Recurrent neural networks
Neurons for sequential data
Backpropagation throuth time
NLP with RNN

74

Neural Language Processing

I Possible tasks in Neural Language Processing (NLP) : neural
machine translation (NMT), visual question answering, chatbots, ...

I A recurrent neural network learns a language model, assigning a
probability to a sequence of words

I Plausible sequences have higher probabilities :

p(“I like cats“) > p(”I table cats“)
p(”I like cats“)) > p(”like I cats“)

I Words are initially represented as 1-of-V vectors → vocabulary
size V is huge !

I For NLP, inputs of recurrent neural networks are embeddings

75

Word embeddings

I Word embeddings have a size much smaller than V

I Example :

Apple : [1.11, 2.24, 7.88]
Orange : [1.01, 2.04, 7.22]
Car : [8.41, 2.34,−1.28]
Table : [−1.41, 7.34, 3.01]

I Embeddings are different (e.g. in terms of Euclidean distance) if
corresponding words are semantically different

I Initial sequence : (ω1,ω2, ...ωT)

I Sentence fed as input to the RNN : x = (x1,x2, ...xT),
with

xt = Eωt

where E is the embedding operator (projection)

76

Language modeling

I Input : sequence (ω1,ω2, ...ωT)

I Output : shifted sequence (ω2,ω3, ...ωT+1)

W W

V V V

U U U

ω2 ω3 ω4

y1 y2 y3

h1 h2 h3

x1 x2 x3

ω1 ω2 ω3

Figures by O. Grisel and C. Ollion, https://github.com/m2dsupsdlclass
77

Language modeling

I Neural machine translation (NMT)

I The hidden state at the last iteration encodes the memory for the
entire sentence

Figure by A. See, http://web.stanford.edu/class/cs224n
78

Conclusion

Deep learning models

I are powerful, for many many tasks !

I need A LOT of annotated data,

I move the problem of feature engineering to architecture engineering

Forthcoming challenges

I Explainability of learnt features

I Make architectures less time and memory-consuming (decrease the
number of layers/parameters without performance loss)

I Public debate on algorithms, artificial intelligence, ethics... (what AI
can do, what it cannot do, what it should not be used for...)

79

	Introduction
	Convolutional networks
	Reminder: neural networks
	Convolutional neural networks
	Example of successful architecture: AlexNet

	Recurrent neural networks
	Neurons for sequential data
	Backpropagation throuth time
	NLP with RNN

	anm0:
	anm1:
	anm2:
	anm3:

