

Machine Learning for Image Analysis

Jean-Yves Ramel

ramel@univ-tours.fr

Laboratoire d'Informatique Fondamentale

et Appliquée de Tours

LABORATOIRE D'INFORMATIQUE FONDAMENTALE ET APPLIQUÉE DE TOURS

What is segmentation ?

- Image decomposition into regions corresponding to meaningful objects
 - 1 object = 1 label \rightarrow Pixel tagging
 - 1 object = Homogeneity criteria ?
 - Same color = same region
- Easy for human
 - Use of a priori knowledge
 - Looking to the whole image for a more global interpretation
- 3 main categories of segmentation methods
 - Region based approach : associate similar pixels to obtain homogenous regions
 - Contour based approach: search for adjacent dissimilar pixels to obtain the frontiers between homogenous areas
 - Today, mainly Machine Learning based approaches

1 region = 1 label = 1 color (for human visualisation)

Machine learning based approaches

Unsupervised Classification

We just have the objects described by features → Grouping similar objects into homogenous clusters

Supervised Classification **→** Machine Learning

A training/learning set is available to define, learn **a classifier** (class recognizer)

Principle 1

- Images are no more seen as image, BUT
- Pixels or ROIs become objects \rightarrow Each object has to be described by features

STOP

- o 1 object ⇒ p features ⇒ 1 Vector = 1 Point ∈ R^p → n objects = 1 table
- o Statistics, Data analysis and Machine Learning tools become usable

Principle 1

- o Images are no more seen as image, BUT
- Pixels or ROIs become objects \rightarrow Each object has to be described by features
- 1 object \Rightarrow p features \Rightarrow 1 Vector = 1 Point $\in \mathbb{R}^p \rightarrow n$ objects = 1 table
- o Statistics, Data analysis and Machine Learning tools become usable

Principle 2: Data (labeled) becomes the Graal → Big data / data science

- 1 object \Rightarrow p features \Rightarrow 1 Vector = 1 Point $\in \mathbb{R}^p$
- Dataset = Table of Vectors with or without a label (class)
- Selected Features are crucial (expertise, ...)
 - Stable and discriminative
 - o And...

• If a label is available for each object, we speak of Learning / Training sets

How computers can recognize objects?

- We need a large set of (labelled) examples similar to the patterns to be recognized → a training set
- We need a list of **stable and discriminative** features (shape, color, size,...) used to describe the patterns (labelled ones and unknown one)

How computers can recognize objects?

- We need a powerful model of classifier
- We need a powerful **similarity measure** (dissimilarity, distance, metric) to compare objects together

Unknown object

Machine learning based approaches

Unsupervised classification : k-means clustering

o No tagged data available ⇒ learning impossible
o We look for k classes starting from k centers (*G_i*)

Objectif : minimising the intra-class variance

Algorithm:

1 - Choose K centers randomly

2 – Repeat :

a/ Allocate each x to the closest center Gib/ Compute the new Gi until stabilization

Clustering on images

Group together pixels by color, automatic segmentation: k-means, k = 2

Machine learning based approaches

Supervised classification : k-Nearest-Neighbors (kNN)

 ${\rm o}$ We have a training set with feature vectors tagged with the corresponding classes (w_i)

• The unknown vector X_j is classified with/inside the most represented class among its k nearest neighbors

Or other sophisticate techniques for classifier definition = ML

Volumic Atlas

Spatial information on the position and intensity of anatomical structures

Different types of atlases :

➢ Simple

Volumic Atlas

Spatial information on the position and intensity of anatomical structures

Different types of atlases :

- Simple
- Probabilistic

Volumic Atlas

Spatial information on the position and intensity of anatomical structures

Different types of atlases :

- ➢ Simple
- Probabilistic
- Multi-Atlas

Multi-Atlas of Human Brain used during MICCAI'12 contest

Using Atlases to segment images

Registration methods are needed when using atlases

- Transformations
 - Rigid
 - Refined
 - Non-linear (TPS, B-spline, etc ...)
- Metrics
 - Sum of squared differences
 - Mutual information
 - Cross-correlation

Label propagation

- Merging information and decision
- Voting method, globally weighted [Artaechevarria et al., 2008], locally weighted [Isgum et al., 2009]
- Joint label fusion [Wang et al., 2013], Generative model [Sabuncu et al., 2010], etc.
- Mix of Gaussian Markov Models [Bricq et al., 2006], Markov Random Field [Scherrer et al., 2009], etc.

Synthesis

- Principle: Pixels are random variables representing the probability of belonging to each class
- . Then, estimation of the maximum likelihood (MAP, EM, ...)
 - Markov chain: 2D represented in 1D
 - Markov Fields: Only neighbors count

Advantages disadvantages

- Exploitation of a priori knowledge (atlas)
- Learning phase
- . Slow

What is feature engineering?

- Arguably the **core** problem of machine learning (especially in practice)
- ML work well if there is a clear relationship between the inputs (features representing objects: x_i) and the outputs (p: the function you are trying to model / learn)

Classifier = Linear model

- Compute a probability for each possible class according the selected features
- Linear model means output = linear combination of the inputs

What is feature engineering?

- Even with more sophisticate models, generally, feature engineering is just coming up with combinations of the features we already have
- Cannot learn transformations of features, only use existing features. Human must create good features

What if we added more processing?

What if we added more processing?

Create "new" features using old ones. We'll call **H** our *hidden layer*

What if we added more processing?

As with linear model, H can be expressed in matrix operations

What if we added more processing?

Now our prediction p is a function of our hidden layer

What if we added more processing?

Now our prediction p is a function of our hidden layer

What if we added more processing?

Now our prediction p is a function of our hidden layer

What if we added more processing?

Can still express the whole process in matrix notation! Nice because matrix ops are fast

This is a neural network! (the starting point of Deep Learning)

- This one has 1 hidden layer, but can have way more
- Each layer is just **some functions** ϕ applied to linear combination of the previous layer

What about activation functions φ ?

- . So many possible options
- want them to be easy to take derivative

Deep Learning (Convolutional Neural Networks - CNN)

Too many weights!

• Would rather have sparse connections

Fewer weights Nearby regions - related Far apart - not related

Convolutions!

Just weighted sums of small areas in image

 Weight sharing in different locations in image

Convolutional Layer

- Input: an image Processing: convolution with multiple filters
 Output: an image, # channels = # filters
- Output still weighted sum of input (w/ activation)

Filter bank (to be learned)

Feature maps

Input Volume (+pad 1) (7x7x3)						Filter W0 (3x3x3) Filter W1 (3x3x3)					Output Volume (3x3x2)			
x[:,:,0]						w0[:,:,0]	w1[:,:	:,0]	0[:		,0]		
0 0	0	0	0	0	0	-1 0 1	0	1	-1	2	3	3		
0 0	0	1	0	2	0	0 0 1	0	-1	0	3	7	3		
0 1	0	2	0	1	0	1 -1 1	0	-1	1	8	10	-3		
0 1	0	2	2	0	0	w0[:,:,1]	w1[:,:	:,1]	0[:		,1]		
0 2	0	0	2	0	0	-1 0 T	-1	0	0	-8	-8	-3		
0 2	1	2	2	0	0	1 -1 1	1	-1	0	-3	1	0		
0 0	0	0	0	0	0	0 1 0	1	-1	0	-3	-8	-5		
¥1.	11		\sim			w0[:,,2]	w1[:,:	:,2]					
0 0		0	0	0 -	0 /		-1	1	-1					
0 2	1	2	1	1	0	$1 \chi 0$	0	-1	-1					
0 2	ŀ	1	1	1	0	6 1 0	1	0	0					
02	1	2	0	1	ø		1	0	0					
0 0	2	1	0	1	0	Bias b0 (1x1x1)	Bias	b1	(1x1x1)					
0 1	2	2/	2	2	0	b0[:,:,0]	b1[:,:	:,0]					
0 0	1/	2	0	V	6	1	0							
0 9	0	0	0/	6	0									
×	21	1	/						toggla mar					
0 0	0	6	0	0/	0				toggie mo	vemen	n			
0 2	1	1	2⁄	0	0									
0/1	0	V	1	0	0									
0 0	1	0	0	0	0									
0 1	0	2	1	0	0									
0 1	0	~			0									
0 2	2	1	1	1	0									
0 0	0	0	0	0	0									

Example of a Conv layer with K=2 filters, each with a spatial extent F=3 , moving at a stride S=2, and input padding P=1

Padding

- Convolutions have problems on edges
- Do nothing: output a little smaller than input
- Pad: add extra pixels on edge

Stride

- How far to move filter between applications
- We've done stride 1 convolutions up until now, approximately preserves image size
- Could move filter further, downsample image

ReLU Layer

Applies an elementwise activation function max(0,x)

 turns negative values to zeros

Pooling Layer

Input: an image
Processing: pool pixel values over region
Output: an image, shrunk by a factor of the stride

• Hyperparameters:

What kind of pooling? Average, mean, max, min How big of stride? Controls downsampling How big of region? Usually not much bigger than stride

• Most common: 2x2 or 3x3 maxpooling, stride of 2

Fully Connected Layer

- The standard neural network layer where every input neuron connects to every output neuron
- Often used to go from image feature map -> final output or map image features to a single vector
- Eliminates spatial information

Example of Convnet Building Blocks

• Convolutional layers:

Connections are convolutions Used to extract features

• Pooling layers:

Used to downsample feature maps, make processing more efficient Most common: maxpool, avgpool sometimes used at end

• Connected layers:

Often used as last layer, to map image features \rightarrow prediction No spatial information

lots of weights, no weight sharing \rightarrow Inefficient ?

So many architectures & hyperparameters.... → Architecture engineering replaces Feature engineering • CONVnet, R-CNN, Fast R-CNN, Faster R-CNN, YOLO

R-CNN: Regions with CNN features

Binary Image Processing

Why so much attention?

- Problem simplification (0 & 1)
 - Background = white / Shapes = black
 - 1 object \rightarrow 1 region / 1 contour \rightarrow 1 black component (blob)
 - Analysis, characterization of objects from B&W data
 - Counting, measure, shape analysis are easier
- Mathematic morphology and discrete geometry
 - Many possible operations on binary images

Binarisation = Thresholding

- Manual Thresholding → The easiest and the most often used
- There is a relation between the gray level and the probability of belonging to a shape

Binarisation with a global threshold

- How to choose a good threshold \rightarrow so many methods
 - It depends of the images and the objectives ...

Automatic thresholding: OTSU

- Knowing there are only 2 classes of color in the image
 - We assume that the gray level distribution is composed by 2 Gaussians
 - We look for a threshold *t* that will minimize the intra-class variance

Automatic thresholding: OTSU

- For each possible value of *t*, the intra class variance is computed $\sigma_w^2(t) = \omega_1(t)\sigma_1^2(t) + \omega_2(t)\sigma_2^2(t)$
- The optimal threshold is the one for which σ^2_w is minimum
 - w_i is the probability (weight) of the class i
 - $-\sigma_i^2$ is the variance of the gray levels of the class *i*
- A more efficiant formulation uses the inter-class variance σ^2_{b}
 - probability and mean of the classes can be updated iteratively

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t) \left[\mu_1(t) - \mu_2(t)\right]^2$$

1. Calculer l'histogramme et les probabilités de chaque niveau d'intensité 2. Définir les $\omega_i(0)$ et $\mu_i(0)$ initiaux

3. Parcourir tous les seuils possibles $t=1\dots$ intensité max

1. Mettre à jour ω_i et μ_i

2. Calculer
$$\sigma_b^2(t)$$

4. Le seuil désiré correspond au $\sigma_b^2(t)$ maximum.

Problem with Global Thresholding

A solution ?

Sonnet for Lena

O dear Lona, your beauty is so vast It is hard sometimes to describe it fast, I thought the entire world I would impress If only your portrait I could compress. And First when I tried to use VQ I found that your checks belong to only you. Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, senenal and tartial Thirteen Grays found not the proper fractal. And while these softwarks are all durite severe I ought have fixed them with backs here or there first when filters took apartic from your eyes I would found all this. Fill just similar.

Takimene Coulding to

Sonnet by 1

O deal 3 of It is batched and the I thought the state of I only comparison the I only comparison the state of a state and that your checks below, to erack your ind, and the state of discrete comparies personal and the tual indicates the proper fractal.

Adaptive local Thresholding

- A local threshold is defined and used for each pixel according to it neighborhood (sometime difficult to select)
- **Niblack :** $S = m + ks^2$ avec k = -0,2 | *m* : mean et s : standard deviation

Sonnet for Lena

O dear Lona, your beauty is so wast It is hard somethors to describe it fast. I thought the entire world I would impress If only your portrait I could compress. Alast First when I tried to use VQ I found that your checks belong to only you. Your silky hair contains a thousand lines Hard to match with some of discrete cosines. And for your lips, sensual and tactual Thirteen Crays found not the proper fractal. And while these setbacks are all quite severe I might have fixed them with backs here or there that when filters took sparkle from your eyes I said, 'Damu off this, TB just digitize.'

Thomas Caltharat

Background-Foreground segmentation

- How to analyze black shapes on a white background?
 - Shape localization
 - Counting
 - Describing, charaterizing
 - Classifying

Notion of Connected component

- A set S of pixels is a 4-connected component if and only if, for all pairs of pixels P and Q, a 4-path p₁, p₂, p₃, ...p_n with p₁ = P and p_n = Q and all p_i ∈ S.
- A set S of pixels is a 8-connected component if and only if, for all pairs of pixels P and Q, a 8-path p₁, p₂, p₃, ...p_n with p₁ = P and p_n = Q and all p_i ∈ S.

•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	0	•
		1	1			1	1			1	1			1	1	•
	1	1	1	1	1	1	1	1		•	1	1	1	1	•	•
	•	•	1	1	1	1	•	•		1	1	1	1	•		•
		1	1	1	1	•			1	1	1	•	•	1	1	•
	1	1	1	•	•	1	1		•	•	1	1	1	•	•	•
	•	1	1			•	•		1	1	•	•	•	1	1	•
		•	•			1	1	1	1	•	•	1	1	1	1	•
						0	•	•	•	•		•	•	0	0	•

• A two pass algorithm

•		•		•																						2	•		
			*	*				*	*	*								1	1				2	2	2				
			*	*				*	*	*								1	1				2	2	2				
		*	*	*	*		*	*	*	*							1	1	1	1		2	2	2	2				
			*	*	*	*	*	*	*	*				10				1	1	1	?	*	*	*	*				
	- 88				*	*	*	*						125		2	2	1		*	*	*	*		237	1	0.000	÷.,	1
-						*	*	*	- 20		*			10		2				1975	*	*	*	2		*			
-	- 20	1			0.5	*	*	*			*			-		0					*	*	*	- 5	-0	*	*		
÷.						*	*	*			*	*					*	*			*	*	*			*	*		2.5
		*				100		20				0.55 135 V	23. *		•								1				1000	1	1
1				•		•					1	•		•	•		-			•	•			•	•	•	•	ľ	•
•				•	•	•	•	•	•	•	•	•	•	•	1			•	•		•	•	•	•	•		•		•
(1)	01	riį	giı	na:	1 1	bi	nai	ry	ir	nag	ge .	10		(4	:)	L	abe	el:	inį	3	in	P	rog	gre	88	3.		
•	•	•		·		•	•	:	•	•	•	•	•		•	•	•		•	×.	•	×	•		:	•	•	•	•
•	•	•	1	1		٠	٠	2	2	2	•		•		•	۰.	+	1	1			٠	1	1	1	•	٠	٠	٠
•	•	•	1	1	•		•	2	2	2	•	•	•				•	1	1	•	•	٠	1	1	1	٠	•	•	٠
•	•	1	1	1	1	٠	2	2	2	2	•	•	•			•	1	1	1	1	•	1	1	1	1	•			•
•	•	•	1	1	1	1	1	1	1	1	•	•	•		÷.	•	•	1	1	1	1	1	1	1	1	•		•	•
•	•	•	•	•	1	1	1	1	•	٠	•	٠	٠	•	•	٠	•	•	•	1	1	1	1	•	•	•		•	•
•	٠		•	٠		1	1	1		•	3	•			•	•	•				1	1	1	•	•	2			•
	•	•	•			1	1	1	•	•	3	3	•		•			•	•		1	1	1	•		2	2	•	
•	•	4	4			1	1	1		•	3	3			•	•	3	3		•	1	1	1	•	•	2	2		
	•	4	4			•		•	•	•	•					•	3	3		•	×	•		•	•	•		•	•
•	•	•	•	•		•		•	•	•	•		٠	•	•	e	•	•	•	•	×		•	•3	•	•	•	•	•
(d	1)	S	ar	n	inį	3 (cor	np:	Let	tic	on.	1			(4)	At	fte	er re	la	abe	el igi	ur	nii ent	fia t.	at	id	n	

Connected component Analysis

• Studying their size and shape

			¥	S
Circularité	0.966	0.834	0.395	0.280
Compacité	0.973	0.961	0.685	0.556
Allongement	1.29	1.99	1.00	2.63
Tortuosité	1.06	1.06	1.04	1.26

Connected component Analysis

- Exploitation of the connected components
 - How ?
 - Image analysis sequence ?

Copyright Vidéo : PRC - INRA Nouzilly

Connected Components and connexity !

Mathematical / Binary morphology

Binary morphology and structuring element

- The basic idea in binary morphology is to probe an image with a simple, predefined shape, drawing conclusions on how this shape fits or misses the shapes in the image.
- This simple "probe" is called the structuring element, and is itself a binary image

Some examples of widely used structuring elements (denoted by B):

- In R², B is an open disk of radius r, centered at the origin.
- In Z^2 , B is a 3x3 square, that is, B={(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)}.
- In Z², B is the "cross" given by: B={(-1,0), (0,-1), (0,0), (0,1), (1,0)}.

Basic operations: Erosion

Let B_x be the center of the structuring element *B* that is put on the pixel *X* of the image

Algorithm :

- B_x is positioned on each pixel X of the object A
- IF all pixels of *B* are inside the object *A* THEN

 B_x is set to kept (as part of the eroded object)

Basic operations: Erosion

• Examples

Let B_x be the center of the structuring element *B* that is put on the pixel *X* of the image

Algorithm :

- B_x is positioned on each pixel X of the object A
- IF $B \cap A \neq \emptyset$ THEN

 B_x is set to kept (as part of the dilated object)

Basic operations: Dilatation

• Examples

Basic operations: Opening

• $A \vee B = (A - B) + B$

 $A \circ B = (A \odot B) \oplus B$

Basic operations: Closing

Ect...

CHRI BEAV-IE BEAV-I Jaraigne D

• Image analysis sequence ?

More sophisticate: Skeleton

- Skeleton is defined by the set of points located at equal distance from the border of the shape
- Union of the centers of the maximal spheres that can be included into the shape
- Computed by successive erosions

More sophisticate: Skeleton

• Computation of the skeleton by successive erosions with different masks

• Small branches have to be removed by using specific masks

Possible also in 3D

- Possible wrong representations of junctions and crossing (noise)
- Noise, barbules, ...

Distance map and Watershed

Euclidian Distance Map (EDM)

 Function that associated to each pixel the distance to the background pixels

$$F_X^d: \mathbf{Z}^2 \to \mathbf{N}$$
$$p \mapsto d(p, X^c)$$

Binary Watershed based on EDM

- Based on EDM, finds the ultimate eroded points (UEPs)
- Dilate each of the UEPs as far as possible
 - either until the edge of the particle is reached,
 - or the edge touches a region of another (growing) UEP.
- Automatically cutting particles that touch
- Work best for smooth convex objects that don't overlap too much.

A full sample (simplified)

- 1. Image acquisition
- 2. Pre-processing :
 - Filtering, noise removal, scale selection, ...
 - Segmentation of the ROI (objects)

0 1 1 200 23 4 1

- 3. Feature extraction : building a vectorial representation of the objects
 - V(2:3;□ 2; 1000; 50; :::; 45)
 - V(□ 3; 10:2; 0; 20; :::;□ 4; 5

4. Classification : select a label for each object from the vectorial representation

5. Post-processing : contextual verification to correct some errors

Pixels can be considzered as features

• distance(C; C_i) = Σ ij | P (i; j) - P_i(i; j) |

C: Unknow object

Training set (tagged models of object)

Feature selection (simplified)

Zoning

- The image is splitted in n blocks
- For each block, some features are computed (number of black pixels)
- A new feature vector is obtained : $V = (Nb_1; Nb_2; ...; Nb_n)$

Classification (simplified)

The unknown object ? is identified as a (A)because min(D(A; ?);D(B; ?)) = D(A; ?)

$$D(A,?) = \sqrt{(0-0)^2 + (3-10)^2 + (0-0)^2 + (4-5)^2 + ... + (3-2)^2}$$

 $D(A,?) = 7,48 \text{ et } D(B,?) = 19,05$

That All for today...

Thank you

Support available

http://www.rfai.lifat.univ-tours.fr/PagesPerso/jyramel/PDF/MISS2019ramel.pdf

Approche Interactive

Modélisation du contenu de l'image ⇒ Structuration des données à l'aide d'un graphe d'adjacence

Nœud = Région

- Attributs = Descripteurs de la région
- Liste des voxels de la région
- Position : G(x,y,z)
- Liste de caractéristiques F_j (les moyennes)
- Forme, couleur, modalités, ...
- Label, annotation, ...

Arc = Relation entre Régions

- Attributs = Descripteurs des relations
- Les 2 nœuds liés
- Aire de la surface de contact
- Type de relation, distance G_1, G_2
- Taux de ressemblance, ...
- Label, annotation, ...

Approche Interactive

<u>Approche classique</u>

Caractérisation des voxels

- Recalage des acquisitions multimodales (T1, T2, ...)
- o 1 voxel = 1 liste de caractéristiques F_i plutôt qu'une couleur
- o 1 voxel = 1 individu \Rightarrow **Voxel**_i = [F₁ F₂ F₃ ...]

Approche interactive

Caractérisation des régions

- Segmentation = regroupement des individus similaires en classes
- Perte de l'information de connexité (vs approche région, contours)
- Caractéristiques Région = Moyenne des caractéristiques des Voxels appartenant à la région

Approche Interactive

Segmentation interactive du contenu de l'image ⇒ Transformation successive du graphe (RAG)

Opération de Division

Fonction Seg correspond à un K-means

- Rapidité d'exécution
- Faible coût en mémoire
- Partitionnement efficace

Nouveau graphe :

$$G_{k+1} = Kmeans(U_{op}, V, G_k, F, U_{Seg})$$

- U_{Seg} : nombre de régions
 - *F* : caractéristiques choisies par l'utilisateur (attributs des nœuds)
- U_{op}.V: identifiant du nœud à diviser

Approche Interactive

Segmentation interactive du contenu de l'image

→ Transformations successives du graphe (RAG)

Opération de Fusion

Simple fonction de fusion Merge

• Nouveau graphe: $G_{k+1} = Merge(U_{op}, E, G_k)$

• Initialisation des attributs de V_{new} durant la fusion de V_1 et V_2

 $V_{new}.T_i = \frac{(V_1.T_i)(V_1.NV) + (V_2.T_i)(V_2.NV)}{V_1.NV + V_2.NV}$

NV : nombre de voxels identifié par un nœud $T = \{\overline{F}, \overline{G}\}$

Approche Interactive

Segmentation interactive du contenu de l'image

→ Transformations successives du graphe (RAG)

Initialisation

- GAR initialisé à partir d'un unique nœud = 1 région unique
- 1^{ère} étape du processus de segmentation : Division
- Libre choix des opérations par la suite (Fusion, Division, Etiquetage, ...)

Construction de scénarios de segmentation interactive

Autres opérations possibles : Etiquetage, simplification, suppression, ...

RECONNAISSANCE DES FORMES

