INTRODUCTION TO VIDEO ANALYSIS

Donatello Conte

Legislative issues

- Privacy Legislation
 - Limited data retention period
 - Data security and privacy
 - Relevance of data
 - etc.
 - e.g.
 - *in France up to 45k€ for violation of privacy*
 - *in Italy up to 60k€ and up to three years' imprisonment*

Real-time video analysis systems

- Detecting an event of interest in a video sequence
 - The event depends on the application
 - The response also
 - An alert
 - Some statistics
 - Visual Response

General architecture

walk skate

9

Object Detection

- Object detection is the process of separating moving objects (or object of interest) from the background of the scene
- Many problems to solve: luminosity changes, camouflages, shadows, reflections ...

1 - from http://www.telecom.ulg.ac.be/research/vibe/

Problems

Problems

12

Main approaches

- Model-based approaches
- Algorithms based on feature points
- Algorithms based on differences

Model-based approaches

- The object to be detected is compared with a model in the current image
- It works well with detection of rigid objects

Algorithms based on features points

- These approaches detect (and follow) some features points belonging to the objects of interest
- They are good for detecting partially occluded objects
- They are appropriate for density estimation problems (but also for classification)

Algorithms based on differences

- The objects of interest are detected by difference between two or more images
 - Difference between consecutive images

16/07/2017

Background subtraction algorithm

Foreground

Background representation

- One value per pixel
- A probability distribution for each pixel
 - One Gaussian¹
 - Mixture of Gaussians²
- Objects contours³

- 1. C. R. Wren, A. Azarbayejani, T. Darrel, and A. P. Pentland. Pfinder : Realtime tracking of the human body. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19-7 :780–785, 1997.
- 2. C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence, 22-8 :747–757, 2000.
- 3. A. Cavallaro and T. Ebrahimi. Change detection based on color edges. Dans The 2001 IEEE Intern. Symp. on Circuits and Systems, ISCAS, 2001.

Mixtures of Gaussians

- Model the values of a particular pixel as a mixture of Gaussians
- We determine which Gaussians may correspond to background colors based on the persistence and the variance of each of the Gaussians
- Pixel values that do not fit the background distributions are considered foreground until there is a Gaussian that includes them
- Update the Gaussians

Mixture Model

 At any time t, what is known about a particular pixel (x₀, y₀), is its history

$$\{X_1, \dots, X_t\} = \{I(x_0, y_0, i): 1 \le i \le t\}$$

- This history is modeled by a mixture of *K* Gaussian distributions $P(X_t) = \sum_{i=1}^{K} \omega_{i,t} \cdot \mathcal{N}(\mathbf{X}_t | \mu_{i,t}, \mathbf{\Sigma}_{i,t})$ $\mathcal{N}(\mathbf{X}_t | \mu_{i,t}, \mathbf{\Sigma}_{i,t}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}_{i,t}|^{1/2}} e^{-\frac{1}{2}(\mathbf{X}_t - \mu_{i,t})^T \mathbf{\Sigma}_{i,t}^{-1}(\mathbf{X}_t - \mu_{i,t})}$
- What is the dimensionality of the Gaussian?

Explanations

- At time *t* we have *k* Gaussian distributions for each pixel
 - determined by the available memory and computational power (usually, 3-5 are used)
- For each Gaussian we have:
 - $\omega_{i,t}$ is an estimate of the weight of the ith Gaussian in the mixture at time t
 - $\mu_{i,t}$ is the mean values of the ith Gaussian in the mixture, at time t
 - $\boldsymbol{\Sigma}_{i,t}$ is the covariance matrix of the i^{th} Gaussian in the mixture, at time t
 - Often $\sum_{k,t} = \sigma_k^2 \mathbf{I}$ this assume that the red, green, and blue pixel values are independent and have the same variances

Model Adaptation 1/2

- On-line K-means
- If a new pixel value, X_{t+1} , can be matched to one of the existing Gaussians (within 2.5 σ), that Gaussian's $\mu_{i,t+1}$ and $\sigma_{i,t+1}^2$ are updated as follows:

$$\mu_{i,t+1} = (1-\rho)\mu_{i,t} + \rho \mathbf{X}_{t+1}$$

and

$$\sigma_{i,t+1}^2 = (1-\rho)\sigma_{i,t}^2 + \rho(\mathbf{X}_{t+1} - \mu_{i,t+1})^2$$

• where $\rho = \alpha \mathcal{N}(X_{t+1}|\mu_{i,t}, \sigma_{i,t}^2)$ and α is a learning rate

Model Adaptation 2/2

 None of the K distributions match → replace the least probable distribution with a new distribution (μ = current value, high variance, low prior weight)

Prior weights of all Gaussians are adjusted as follows

$$\omega_{i,t+1} = (1 - \alpha)\omega_{i,t} + \alpha(M_{i,t+1})$$

• where $M_{i,t+1} = 1$ for the matching Gaussian and $M_{i,t+1} = 0$ for all the others

Background and Foreground Modeling

- Heuristic: the Gaussians with the most supporting evidence and least variance should correspond to the background (why?)
- The Gaussians are ordered by the value of ω/σ (high support & less variance will give a high value)
- The first B distributions are choses as the background model

$$B = argmin_b \left(\sum_{i=1}^b \omega_i > T\right)$$

 where T is minimum portion of the image with is expected to be background

Background updating : selectivity

- It is needing to take into account variations during the sequence
- It can be less or more complex based on goals to achieve

$$B_t(x,y) = \alpha \cdot B_{t-1}(x,y) + (1-\alpha) \cdot I_t(x,y)$$

• The learning rate $\boldsymbol{\alpha}$ is critic

Selectivity

- Different updating rate (values of α) based on the region to update
 - Slow updating for the foreground region
 - Fast updating for the background

Selectivity

Summary

- No algorithm is globally the best
- Complex algorithms can solve some problems but are also slower
- Idea: we use a fast basic algorithm and we add some post-processing to solve some specific problems

Filtering

Morphological filtering

=

Filtering

Size-based filtering

Shadow removing

Camouflage problem

Dealing with camouflage : the idea

- We define
 - 1. A model for the object of interest
 - 2. An algorithm to group small regions in a unique region more similar to the model than small ones

Dealing with camouflage : the model and the algorithm

16/07/2017

Dealing with camouflage : an example

Current image and details of an object

Reflections removal

Reflections removal

A new approach

- In above heuristics temporal information are not exploited
- This algorithm is more generic

A structural representation of a video

Algebraic Definition of a nD combinatorial map

Definition (Combinatorial Map)

Let be $n \ge 0$. A *n* combinatorial map (or *n*-map) is an algebra $C = (D, \beta_1, \ldots, \beta_n)$ where:

- D is a finite set of darts;
- 2 β_1 is a permutation on *D*;

③
$$\forall i, 2 ≤ i ≤ n, β_i$$
 is an involution on *D*;

④ $\forall i, 1 \leq i \leq n-2, \forall j, i+2 \leq j \leq n, \beta_i \circ \beta_j$ is an involution.

3D Maps and cells

42

Example

	a	\mathbf{b}	c	d	e	f	g	\mathbf{h}	i	j	k	1	m	n	0	p
α_0	h	с	b	e	d	g	f	a	p	k	j	m	1	0	n	i
α_1	b	a	d	с	f	e	h	g	j	i	l	k	n	m	p	0
α_2	a	b	с	0	n	f	g	h	i	j	k	1	m	e	d	р

- α_0 sews each dart to the dart of the adjacent 0-cell (vertex)
- α_1 sews each dart to the dart of the adjacent 1-cell (edge)
- α_2 sews each dart to the dart of the adjacent 2-cell (face)
- o . . .
- α_n sews each dart to the dart of the adjacent n-cell (n-dimensional simplicial complex)

Principles of the method

- Compute the 3D topological map of a video of foreground masks (*nb* frames)
- Noise are white regions which are badly labeled
- Recognize these regions and merge them with the background

The algorithm

Algorithm 1: Reduce noise on foreground masks **Input**: A video of foreground masks V; A boolean function $criterion(r_1, r_2)$. **Result**: V is modified by merging all the adjacent pairs of regions satisfying criterion. $T \leftarrow$ build the 3D topological map describing V; foreach region $R_1 \in T$ labeled 1, $R_1 \neq R_0$ do foreach region R_2 adjacent to R_1 , $R_2 \neq R_0$ do if $criterion(R_1, R_2)$ then $R \leftarrow merge(R_1, R_2);$ update region R;

return the partition described by T;

Criteria for merging

- 1. Based on the size of region ($size(R_1) < \tau$)
- 2. Based on a topological invariant: Betti numbers
- Intuitively: b_i number of the connected components of the i-surfaces
 - b₀ is the number of connected components
 - b1 is the number of tunnels
 - b2 is the number of voids

Merging criterion based on betti numbers

$size(R_1) < \tau * (1 + \varphi * (\mathfrak{b}_1(R_1) + \mathfrak{b}_2(R_1)))$

	V1	v 3	v 4	v5	v6	v 7	v 8
	Fsc	Fsc	Fsc	Fsc	Fsc	Fsc	Fsc
Aı	0.15	0.31	0.33	0.25	0.44	0.20	0.23
A2	0.35	0.26	0.40	0.37	0.47	0.37	0.46
A ₃	0.30	0.36	0.40	0.28	0.45	0.28	0.35
t2000	0.29	0.40	0.45	0.35	0.48	0.32	0.36
t3000	0.30	0.40	0.45	0.37	0.48	0.32	0.37
t4000	0.30	0.39	0.46	0.37	0.48	0.32	0.37
t2000-p.05	0.33	0.39	0.45	0.41	0.49	0.41	0.40
t2000-p.1	0.35	0.30	0.34	0.42	0.49	0.41	0.41
t2000-p.15	0.37	0.13	0.14	0.39	0.43	0.37	0.38
t3000-p.05	0.34	0.32	0. <u>4</u> 4	0.43	0.49	0.41	0.41
t3000-p.1	0.37	0.12	0.13	0.39	0.42	0.36	0.38
t3000-p.15	0.28	0.05	0.05	0.31	0.36	0.30	0.31
t4000-p.05	0.36	0.25	0.30	0.41	0.49	0.41	0.41
t4000-p.1	0.31	0.05	0.05	0.34	0.38	0.31	0.34
t4000-p.15	0.20	0.02	0.01	0.21	0.24	0.25	0.26

Object tracking

- The goal is to determine the trajectories of detected objects
- Most of the techniques are based on the principle of temporal continuity of the object appearance

Occlusion problem

Occlusion problem

State of the art

- Large literature: many methods, but still an open problem
- Some exemples:
 - KSP: Multiple Object Tracker Using K-Shortest Paths
 - Continuous Energy Minimization for Multi-Target Tracking
 - MonteCarlo methods and Particle Filters

Ideal solution

¹Image taken from Yeh et al. ICIP 2010

A structural representation

Node ID	Cx	Cy	w	h	μ_R	μ_G	μ_B
a	219	267	217	374	190	196	210
b	223	123	72	54	180	191	208
С	201	147	54	42	56	58	68
d	223	235	118	162	99	121	163
е	212	393	217	160	60	72	105
f	223	123	72	54	180	191	208
g	201	147	54	42	56	58	68
ĥ	205	227	60	86	75	95	138
i	223	235	118	162	105	127	171
j	164	380	91	148	57	70	106
k	271	383	91	136	55	68	103
1	126	460	56	31	46	54	78
m	294	455	62	43	56	70	97

The algorithm by example

 L_1

 L_2

 L_3

16/07/2017

The algorithm by example

55

16/07/2017

Demo

A filtering system

 $\mathbf{x}_t = f_t(\mathbf{x}_{t-1}, \mathbf{v}_t)$

 $\mathbf{y}_t = h_t(\mathbf{x}_t, \mathbf{w}_t)$

where \mathbf{x}_t : the hidden state at time t; \mathbf{y}_t : the measurement state; f_t : the temporal evolution of \mathbf{x}_t ; h_t : the measurement equation; \mathbf{v}_t and \mathbf{w}_t : independent white noises.

Goal

Estimating the posterior density function

$$p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \frac{p(\mathbf{y}_t | \mathbf{x}_t) \cdot p(\mathbf{x}_t | \mathbf{y}_{1:t-1})}{\int_{\mathscr{X}} p(\mathbf{y}_t | \mathbf{x}'_t) \cdot p(\mathbf{x}'_t | \mathbf{y}_{1:t-1}) d\mathbf{x}'_t}$$

A solution: particles filters

- Approximating the density function by a weighted sum of N Dirac masses $\delta_{\mathbf{x}_t^{(n)}}(d\mathbf{x}_t)$ centered on hypothetic state realizations $\{\mathbf{x}_t^{(n)}\}_{n=1}^N$ of the state \mathbf{x}_t , also called particles
- $\mathbb{P}(\mathbf{x}_t | \mathbf{y}_{1:t})$ is recursively approximated by the empiric distribution

$$\mathcal{P}_N(\mathbf{x}_t|\mathbf{y}_{1:t}) = \sum_{n=1}^N w_t^{(n)} \delta_{\mathbf{x}_t^{(n)}}$$

where $\mathbf{x}_{t}^{(n)}$ is the nth particle and $w_{t}^{(n)}$ its weight

Particles Filters processing

- **Diffusion step:** propagating the particle swarm $\left\{\mathbf{x}_{t}^{(n)}, w_{t}^{(n)}\right\}_{n=1}^{N}$ using a probabilistic model for the state function;
- Opdate step: computes new particle weights using the new observation y_t;
- Resampling step: generating new particles according to their weight.
- Output:

•
$$\hat{x}_t^{MMSE} = \sum_{n=1}^N w_t^{(n)} \mathbf{x}_t^{(n)}$$

•
$$\hat{x}_t^{MAP} = \operatorname{argmax}_{\mathbf{x}_t} \sum_{n=1}^N w_t^{(n)} \delta_{\mathbf{x}_t^{(N)}}$$

Object Tracking and Particles Filters

- Widely used in the mono-object tracking, because of its reliability to deal with non-linear systems
 - usually the state of the system is the coordinates of the object to track

Object Tracking and Particles Filters

- Problems in multi-objects tracking
 - estimating more objects needs substantially more particles (curse of dimensionality: the number of particles increases exponentially with the number of objects)
 - the association problem between measures and objects has to be solved
 - interactions between objects should be modeled
- The problem is still open

Graph-based particles filter

- Using graphs for representing particles
- One graph = One particle = The entire ensemble of objects in the scene
- Using graph kernels for measuring likelihood

The Representation

The Representation

		Nod	e at	tribu	ites						
ID	label v	visibility	w	h	c_x	c_y	$\dot{w}(\frac{px}{fr})$	$\dot{h}(\frac{px}{fr})$	$\dot{c_x}(\frac{px}{fr})$	$\dot{c_y}(rac{px}{fr})$	$h_o(A)$
A	1	1	41	104	94	207	3	0	15	0	4
в	2	1	57	150	151	220	4	1	12	4	
С	3	1	9 4	197	235	233	4	2	8	8	4
D	4	1	40	81	326	212	1	1	0	10	4
Е	5	1	105	253	505	308	0	0	0	0	4

The Representation

	Edge attributes	ş
ID	fuzzy adjacence measure	$adj \text{ (with } \tau = 0.1 \text{)}$
e(A,B)	0.62	
e(A,C)	0.43	
e(B,C)	0.58	$adi(near(R_1), R_2) = \sum_{x \in R_2} \mu_{near(R_1)}(x)$
e(B,D)	0.32	$ua_{I}(near(n_1), n_2) = \sum_{x \in S} \mu_{R_2}(x)$
e(C,D)	0.27	
e(D,E)	0.12	

65

The likelihood: an Edition Path Kernel

 $p(\mathbf{y}_t | \mathbf{x}_t) \simeq K_{edit}(\mathbf{x}_t, \mathbf{y}_t)$

Graph Kernel based on editions costs

Graph-based Particles Filter

- **Diffusion step**: propagating the particle swarm $\left\{\mathbf{x}_{t}^{(n)}, w_{t}^{(n)}\right\}_{n=1}^{N}$ using a probability model for the hidden state;
- Updating step: computing new particle weights using the new observation **y**_t;
- Resampling step: generating new particles based on old particles weights.
- Output:

•
$$\hat{x}_t^{MMSE} = \sum_{n=1}^N w_t^{(n)} \mathbf{x}_t^{(n)}$$

• $\hat{x}_t^{MAP} = \operatorname{argmax}_{\mathbf{x}_t} \sum_{n=1}^N w_t^{(n)} \delta_{\mathbf{x}_t^{(n)}}$

- Diffusion step: Graph Edition (adding a node, changing an attribute, ...) according to a probabilistic model;
- Updating step: at time t the observation of the scene is also represented by a graph ⇒ the weights of "particle graphs" are computed by means of Graph Kernels;
- Output: MAP: the graph with the highest weight is taken as state representation at time *t*

A toy example

Trajectories Analysis

- Goals
 - Learning of standard behaviors
 - Detecting "abnormal" behaviors
- Methodology
 - Grouping trajectories in categories (clustering)
 - Comparing new trajectories with clusters representatives

Scene partitioning

An example

71_

Trajectories clustering

Trajectories classification

Some results

Tracking algorithm evaluation

- Need of public, standard databases
 - e.g. : PETS, CAVIAR, ETHZ
- Need of standard evaluation idexes
 - e.g : Kasturi indexes

PETS 2010 dataset

Kasturi indexes

- R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M. Boonstra, V. Korzhova, and J. Zhang, "Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 319–336, 2009.
- It is a reference for tracking algorithm evaluation

Kasturi indexes

Object Detection

FDA(t) =	Overlap_Ratio
T DA(t) =	$\left[\frac{N_{G}^{(t)}+N_{D}^{(t)}}{}\right]$,

$$\text{Overlap_Ratio} = \sum_{i=1}^{N_{mapped}^{(t)}} \frac{\left|G_i^{(t)} \cap D_i^{(t)}\right|}{\left|G_i^{(t)} \cup D_i^{(t)}\right|}$$

$$SFDA = \frac{\sum_{t=1}^{t=N_{frames}} FDA(t)}{\sum_{t=1}^{t=N_{frames}} \exists \left(N_G^{(t)} \ OR \ N_D^{(t)} \right)}.$$

$$MODA(t) = 1 - \frac{c_m(m_t) + c_f(fp_t)}{N_G^{(t)}},$$

Kasturi indexes

Object Tracking

$$STDA = \sum_{i=1}^{N_{mapped}} \frac{\sum_{t=1}^{N_{frames}} \left[\frac{\left| G_i^{(t)} \cap D_i^{(t)} \right|}{\left| G_i^{(t)} \cup D_i^{(t)} \right|} \right]}{N_{(G_i \cup D_i \neq \emptyset)}}.$$

$$ATA = \frac{STDA}{\left[\frac{N_G + N_D}{2}\right]}.$$

$$MOTP = \frac{\sum_{i=1}^{N_{mapped}} \sum_{t=1}^{N_{frames}^{(t)}} \left[\frac{|G_i^{(t)} \cap D_i^{(t)}|}{|G_i^{(t)} \cup D_i^{(t)}|} \right]}{\sum_{t=1}^{N_{frames}} N_{mapped}^{(t)}},$$

Descriptors

- Some others applications do not need tracking
 - Face detection
 - Human detection
 - Crowding estimation

• ...

- Often some descriptors are computed...
 - SIFT
 - SURF
 - Haar
 - HOG

• ...

- ... and used in some classifiers
 - SVM
 - K-NN

• ...

PEDESTRIAN DETECTION BY HISTOGRAMS OF ORIENTED GRADIENTS

Navneet Dalal and Bill Triggs CVPR '05

Support Vector Machine Detector (Papagerogiu & Poggio, 1998)

HOG Steps

- HOG feature extraction
 - Compute centered horizonal and vertical gradients with no smoothing
 - Compute gradient orientation and magnitude
 - Divide de image into overlapping blocks
 - Quantize the gradient orientation into *n* bins
 - Concatenate histograms

Computing Gradients

• Centered
$$f' = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

• Masks in x and y directions

0

- In polar coordinates
 - Magnitude
- $s = \sqrt{s_x^2 + s_y^2}$
 - Orientation

$$\theta = \arctan\left(\frac{s_y}{s_x}\right)$$

Cell Orientation Histogram 1/2

- Divide the window into adjacent, non-overlapping *cells* of size *CxC* (C=8)
- In each cell, compute a histogram of the gradient orientation binned into B bins (B=9)
- Few bins \rightarrow quantization artifacts
- Interpolates votes linearly between neighboring bin centers
 - the vote is the gradient magnitude
 - a pixel with magnitude μ and orientation θ contributes a vote

•
$$v_j = \mu \frac{c_{j+1} - \theta}{\omega}$$
 to bin number $j = \left\lfloor \frac{\theta}{\omega} - \frac{1}{2} \right\rfloor \mod B$

• where ω is the width of a bin

Cell Orientation Histogram 2/2

- Example: if θ =85 degrees
- Distance to the bin centers Bin 70 and Bin 90 are 15 and 5 degree, respectively

The resulting cell histogram is a vector with B nonnegative entries

Block normalization

- Group cells into overlapping blocks of 2x2 cells each
- Concatenate the four cell histograms in each block into a single block feature vector **b** and normalize the block feature vector by its Euclidean norm

HOG Features Vector

Concatenate histograms

 Normalize and threshold results to make values independent of overall image contrast and to prevent big influence of very large gradients

$$\mathbf{h} \leftarrow \frac{\mathbf{h}}{\sqrt{\|\mathbf{h}\|^2 + \epsilon}} \qquad \qquad h_n \leftarrow \min(h_n, \tau) \qquad \qquad \mathbf{h} \leftarrow \frac{\mathbf{h}}{\sqrt{\|\mathbf{h}\|^2 + \epsilon}}$$

Some numeric details

- 128x64 window (8192 pixels)
- Cells of 8x8 pixels
- Blocks with 8-pixel overlapping and 4 cells per block
- 9 orientation bins
- 16 cells vertically and 8 horizontally
- 15 blocks vertically and 7 horizontally
- $|\mathbf{h}| = 15 \times 7 \times 4 \times 9 = 3780$
- can be viewed as 15x7x4=420 histograms of 9 values so a 420x9 matrix

Visualization

Conclusions

- A huge number of applications are based on video analysis
- Real-time processing, privacy laws, etc. impose severe constraints to algorithms
- Many problems are still open