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Some applications
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Some applications
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Some applications
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Legislative issues

- Privacy Legislation

Limited data retention period
Data security and privacy
Relevance of data

etc.

e.g.
- in France up to 45k€ for violation of privacy
- in Italy up to 60k€ and up to three years' imprisonment
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Real-time video analysis systems
- Detecting an event of interest in a video sequence

- The event depends on the application

- The response also

- An alert
« Some statistics

 Visual Response
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General architecture
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Object
Detectlon
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Object Detection

- Object detection is the process of separating moving
objects (or object of interest) from the background of the
scene

- Many problems to solve: luminosity changes,
camouflages, shadows, reflections ...

1 — from http://www.telecom.ulg.ac.be/research/vibe/
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Problems

Waving trees ]

Light of day
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Problems

Camouflage

Foreground
aperture
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Problems

[Shadows

Waking
Person

13



16/07/2017

Main approaches

- Model-based approaches
- Algorithms based on feature points

- Algorithms based on differences

14
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Model-based approaches

- The object to be detected is compared with a model in the
current image

- It works well with detection of rigid objects
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Algorithms based on features points

- These approaches detect (and follow) some features
points belonging to the objects of interest

- They are good for detecting partially occluded objects

- They are appropriate for density estimation problems (but
also for classification)
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Algorithms based on differences

- The objects of interest are detected by difference between
two or more images

- Difference between consecutive images
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Background subtraction algorithm

Background

subtraction - Thresholding

}

Images
sequence

Background

Foreground
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Background representation

- One value per pixel
- A probability distribution for each pixel

- One Gaussian
- Mixture of Gaussians?

- Objects contours?®

1. C. R. Wren, A. Azarbayejani, T. Darrel, and A. P. Pentland. Pfinder : Realtime tracking of
the human body. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19-7
:780—785, 1997.

2. C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 22-8 :747—757, 2000.

3.  A. Cavallaro and T. Ebrahimi. Change detection based on color edges. Dans The 2001
IEEE Intern. Symp. on Circuits and Systems, ISCAS, 2001.
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Mixtures of Gaussians

Model the values of a particular pixel as a mixture of
Gaussians

We determine which Gaussians may correspond to
background colors based on the persistence and the
variance of each of the Gaussians

Pixel values that do not fit the background distributions
are considered foreground until there is a Gaussian
that includes them

Update the Gaussians
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Mixture Model

- At any time t, what is known about a particular pixel (xg,yy), IS
its history

{Xl' ...,Xt} = {I(xo,yo, l) 1<i< t}
- This history is modeled by a mixture of K Gaussian

distributions
Z Wit - Xt Mz ts 2 )

1 1 1 . T ,.__1 . —Lhg ¢
N(Xt‘ﬂ‘i,tazi,t) — (27T)D/2 |2 t e Q(Xt “'“t) Ez,t (X i, )

- What is the dimensionality of the Gaussian?
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Explanations

- At time t we have k Gaussian distributions for each pixel

- determined by the available memory and computational power
(usually, 3-5 are used)

- For each Gaussian we have:
- w; ¢ is an estimate of the weight of the i"" Gaussian in the mixture at
time t
- U; ¢ is the mean values of the it Gaussian in the mixture, at time ¢
- %, is the covariance matrix of the it" Gaussian in the mixture, at
time t

- Often 3, ; = 071 this assume that the red, green, and blue pixel
values are independent and have the same variances
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Model Adaptation 1/2

- On-line K-means

- If a new pixel value, X;,,, can be matched to one of the
existing Gaussians (within 2.5c), that Gaussian’s Ki,t+1
and o;,,, are updated as follows:

i1 = (1 — p)pie + pXip
- and

0-722,t—|—1 = (1 — P)U?,t + p(Xpy1 — Ni,t+1)2

- where p = aN(Xi11|pi, 07 ) and « is a learning rate
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Model Adaptation 2/2

- None of the K distributions match - replace the least
probable distribution with a new distribution (u = current
value, high variance, low prior weight)

- Prior weights of all Gaussians are adjusted as follows
wit+1 = (1 — a)wi e + (M 41)

- where M, ;11 = 1for the matching Gaussian and M; ;11 =0
for all the others
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Background and Foreground Modeling

- Heuristic: the Gaussians with the most supporting
evidence and least variance should correspond to the
background (why?)

- The Gaussians are ordered by the value of w/o (high
support & less variance will give a high value)

- The first B distributions are choses as the background
model

B = argminy, (25:1 w; > T)

- where T is minimum portion of the image with is expected
to be background
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Background updating : selectivity

- It is needing to take into account variations during the
sequence

- It can be less or more complex based on goals to achieve

Bi(x,y) =a-Bi1(x,y) + (1 —a) - I.(x,y)

- The learning rate o is critic
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Selectivity

- Different updating rate (values of a) based on the region
to update

- Slow updating for the foreground region

- Fast updating for the background
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Selectivity

Backgroun

d

Input

D
)

Updating /I\Ij
Object
detection Foreground mask

28
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Summary

- No algorithm is globally the best

- Complex algorithms can solve some problems but
are also slower

- ldea: we use a fast basic algorithm and we add
some post-processing to solve some specific
problems
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Filtering

- Morphological filtering

. B I 1 P |
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Filtering

- Size-based filtering

31
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Shadow removing
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Camouflage problem
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Dealing with camouflage : the idea
- We define

1. A 'model for the object of interest

2. An algorithm to group small regions in a unique region more
similar to the model than small ones
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Dealing with camouflage : the model and the algorithm

Algorithm 1. The pseudo-code of the grouping algorithm
S+ all detected blobs
C—8x8
while 9(X,Y) € C do
comment: Perform and verify the conditions for grouping blobs X and YV
R1 «— rightp(X) > leftp(Y) Aleftp(X) < rightp(Y)
Z—XUY
<perform Inverse Perspective Mapping to calculate the actual size of Z>
R2 — height(Z) € [h1, hz] Vo lleft
R3 — width,(Z) € [by, b2]
if R1 A R2A R3 then
comment: Perform the grouping and update the set of blobs
<connect the two foreground blobs X and Y by joining their barycenter>

S+—S—-{X,Y}
S 81 {Z}
C+—8x58
else
00 = [(X, )}
end if

end while

top

bottom

X

right

IJ] S.‘Eﬂhz
].'Il i}'ihz



16/07/2017 36

Dealing with camouflage : an
example

Foregrou
Mask

Current image and details of an object
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Reflections removal

i
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Reflections removal

}R;

S IFGLy) = Byl

(x,v)er,

— nNa b
Ay=D"—D"

dy =

l b I Z
a o 2 !’ = — y
D.‘. — IRUl . (!} “- IRh:l (Il
Y\ ieR" Y ieR}
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A new approach

- In above heuristics temporal information are not exploited

- This algorithm is more generic
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A structural representation of a video
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Algebraic Definition of a nD combinatorial map

Definition (Combinatorial Map)

Let be n > 0. A n combinatorial map (or n-map) is an algebra
C=(D,p,--.,B,) where:

@ D is a finite set of darts;

@ [, is a permutation on D;

© Vi, 2 <i<n, B;is an involution on D;

Q Vi 1<i<n—2,Vj,i+2<j<n, BioBisan involution.




3D Maps and cells
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Example

o e S R cldelfle LKl

2 i J cible|d|g|f|a|plk]) |

T o @@ L aldic|flelhigi|i|l]k =
h | el |n X k agla|blclom flglh|1|]|k|] [m]|E]|d|p
Tg T mY

@ oo sews each dart to the dart of the adjacent 0-cell (vertex)
@ «; sews each dart to the dart of the adjacent 1-cell (edge)
@ x> sews each dart to the dart of the adjacent 2-cell (face)
' s s

@ p sews each dart to the dart of the adjacent n-cell (n-dimensional sim-
plicial complex)
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Principles of the method

- Compute the 3D topological map of a video of foreground
masks (nb frames)

- Noise are white regions which are badly labeled

- Recognize these regions and merge them with the
background
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The algorithm

Algorithm 1: Reduce noise on foreground masks

Input: A video of foreground masks V;
A boolean function criterion(r,,rs).
Result: vV is modified by merging all the adjacent pairs of regions
satisfying criterion.

T + build the 3D topological map describing V;
foreach region R, € T labeled 1, R, # R, do
foreach region R, adjacent toR,, R, # R, do
if criterion(R,R>) then

R <+ merge(R;, R»);
L update region R;

return the partition described by T ;
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Criteria for merging

- 1. Based on the size of region (size(R;) < 1)
- 2. Based on a topological invariant: Betti numbers

- Intuitively: b, number of the connected components of the
I-surfaces

- bois the number of connected components

- b1is the
number
of tunnels

- b2is the
number
of voids

B BB s Bg= 1,6, =2,8: =1
B == Ty ] SRy g =
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Merging criterion based on betti numbers

size(Ry) < 7x (1 +@x* (by(Ry) + b2(Ry)))

Vi V3 v4 V5 vb6 V7 v8
Fsc || Fsc || Fsc || Fsc || Fsc || Fsc || Fsc
A1 0.15 || 0.31 || 0.33 || 0.25 || 0.44 || 0.20 || 0.23
Az 0.35 || 0.26 || 0.40 || 0.37 || 0.47 | 0.37 -
A3 0.30 || 0.36 || 0.40 || 0.28 || 0.45 || 0.28 || 0.35
f2000 0.29 0.45 || 0.35 || 0.48 || 0.32 || 0.36
t3000 0.30 - 0.45 || 0.37 || 0.48 || 0.32 || 0.37
tg000 0.30 | 0.39 0.37 || 0.48 || 0.32 || 0.37
f2000-p.05 || 0.33 | 0.39 || 0.45 || 0.41 0.40
t2000-p.1 0.30 || 0.34 | 0.42 0.41
t2000-p.15 #| 0.13 || 0.14 || 0.39 || 0.43 | 0.37 || 0.38
t3000-p.05 34 || 032 || 0.44 m 0.41 |
t3000-p.1 0.12 || 0.13 || 0.39 || 0.42 || 0.36 || 0.38
t3000-p.15 0.05 || 0.05 || 0.31 || 0.36 || 0.30 || 0.31
tq000-p.o5 0.25 || 0.30 || 0.41 _- 0.41 ||
tgoo0-p.1 || 0.31 || 0.05 || 0.05 || 0.34 || 0.38 || 0.31 || 0.34
t4000-p.15 || 0.20 || 0.02 || 0.01 || 0.21 || 0.24 || 0.25 || 0.26
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Object tracking

- The goal is to determine the
trajectories of detected objects

- Most of the techniques are based
on the principle of temporal
continuity of the object appearance
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Occlusion problem

49
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Occlusion problem
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State of the art

- Large literature: many methods, but still an open problem

- Some exemples:
- KSP: Multiple Object Tracker Using K-Shortest Paths
- Continuous Energy Minimization for Multi-Target Tracking

« MonteCarlo methods and Particle Filters
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|deal solution

Image taken from Yeh et al. ICIP 2010

52
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A structural representation

53

a)

Ly

NodeID ¢ ¢ w h ur Mc MB
a 219 267 217 374 190 196 210
b 223 123 72 54 18D 191 208
c 201 147 54 42 56 58 68
d 223 236 118 162 99 '121 163
e 212 393 217 160 60 72 105
t 223 123 72 54 180 191 208
g 201 147 54 42 56 58 68
h 205 227 60 8 75 95 138
i 223 235 118 162 105 127 171
j 164 380 91 148 57 70 106
k 271 383 91 136 55 68 103
1 126 460 56 31 46 54 78

m 294 455 62 43 56 70 97

Ls
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The algorithm by example
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The algorithm by example
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Demo

56
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A filtering system

Xt = f(Xe—1, Vi)

Yt = ht(xfr Wt)

where X;: the hidden state at time t;
Y+: the measurement state;
fr: the temporal evolution of X,
h:: the measurement equation;
V¢ and wW¢: independent white noises.

Goal
Estimating the posterior density function

p(Ye|Xt) - p(X¢|V1:t—1)
Jar P(YelX}) - P(X3|Y1:6—1)dX}

E(XHYI:t) T

57
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A solution: particles filters

@ Approximating the density function by a weighted sum of NN Dirac masses

N
0. (dXt) centered on hypothetic state realizations {x{t”)} of the state
t =1
X, also called particles !

P(x¢|y1.+) is recursively approximated by the empiric distribution

N

n(XelV1t) Z )5,({:1

where xg”) is the nt" particle and wt(”) its weight
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Particles Filters processing

propagating the

particle swarm {xt”], wé”)} using
n=1

a probabilistic model for the state

function:

© Update step: computes new par-
ticle weights using the new obser-
vation vy,

© Resampling step: generating new
particles according to their weight.

@ Diffusion step:

©@ Output:
& X;wmsg N " W(ﬂ)x(ﬂ)
~MAP N (n)
@ X, = argmaxy, 2,1 W, rjx[m;
E

/T\

//M/ [

‘1

59

Start with Imtial state valus,
imtial distribution

v r

Draw samples to mumie the
current state

.

Using state equanion, find the next
Sfalc

Based on the eqns (1) and (5).
define the weights fo the parncles

.

Using some Resampling
technique, resample the particles

.

Retum back ull all observations
are gxhansiod
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Object Tracking and Particles Filters

- Widely used in the mono-object tracking, because of its
reliability to deal with non-linear systems

- usually the state of the system is the coordinates of the object to
track
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Object Tracking and Particles Filters

- Problems in multi-objects tracking

- estimating more objects needs substantially more particles (curse
of dimensionality: the number of particles increases exponentially
with the number of objects)

- the association problem between measures and objects has to be
solved

- interactions between objects should be modeled

- The problem is still open
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Graph-based particles filter

- Using graphs for representing particles

- One graph = One particle = The entire ensemble of
objects in the scene

- Using graph kernels for measuring likelihood

62
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The Representation
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The Representation

Node attributes

ID  label visibility w & e 6y i £ hf-l}—:‘,l ri':l}_i} c.y{%] held)

fr
A 1 1 41 104 94 207 3 0 15 ] l:i
B 2 1 57 150 151 220 4 1 12 4 k"l
C 3 1 94 197 235 233 4 2 8 8 kl
D 4 1 40 81 326 212 I 1. a 10 k‘l

E ) 1 105 253 505 308 ) 0 0 0 l‘l
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The Representation

aj
.. 1
d)
Edge attributes

ID fuzzy adjacence measure adj (with r = 0.1)

e(A,B) 0.62

e(A,C) 0.43

e(B,C) 058 o gi(near(Ry), Bs) — 2 veRy Mrear(Ry) ()
¢(B,D) 0.32 S SIS )
e(C,D) 0.27

o(D,E) 0.12
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The likelihood: an Edition Path Kernel

@
X

B '/. *—o—0

& e
® o
? P(VelXt) =~ Kedit(Xt, Yt)
yt \ H
-

Graph Kernel based on editions costs

) Edition paths: (h, k(h), ..., kKP(h))

__ costy (hy )+costy (h2)

Keait(M, h2) = 5: Tp o T 0 € 7 cost Ketassic(K*(h1), &' (h2))
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Graph-based Particles Filter

Diffusion step: propagatmg the
particle swarm {xt , Wy )} using
a probability model for the hldden
state;

Updating step: computing new
particle weights using the new ob-
servation ¥;;

Resampling step: generating new
particles based on old particles
weights.

@ Output:
2 )?EJMSE o a Wiﬂ}xiﬂ]
o KMAF — argmiax, TN win}ﬁx;m;
t

@ Diffusion step:

Graph Edition
(adding a node, changing an at-
tribute, ...) according to a prob-
abilistic model;

Updating step: at time t the ob-
servation of the scene is also rep-
resented by a graph = the weights
of “particle graphs” are computed
by means of Graph Kernels;

Output: MAP: the graph with the
highest weight is taken as state rep-
resentation at time t
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A toy example

1

2

p=0.2

p=0.1

CD/G> o

p=0.2

@
ral 1 /
| ©

- =
! h

68

t+1
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Trajectories Analysis
- Goals

- Learning of standard behaviors

- Detecting “abnormal” behaviors

- Methodology

- Grouping trajectories in categories (clustering)

- Comparing new trajectories with clusters representatives

69
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Scene partitioning

70
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An example
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Trajectories clustering

72



16/07/2017

Trajectories classification

TRAJECTORY
EXTRACTION

=

L 4

TRAJECTORY
REPRESENTATION

PROTOTYPES OF
““NORMAL
TRAJECTORIES”

CLASSIFICATION

73

NORMAL/

\ 4
ABNORMAL

>

DETECTION
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Some results
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Tracking algorithm evaluation

- Need of public, standard databases

- e.g.: PETS, CAVIAR, ETHZ

- Need of standard evaluation idexes

- e.g : Kasturi indexes

75
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PETS 2010 dataset
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Kasturi indexes

- R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M.
Boonstra, V. Korzhova, and J. Zhang, “Framework for performance evaluation of face,
text, and vehicle detection and tracking in video: Data, metrics, and protocol,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 319-336,

20009.

- It is a reference for tracking algorithm evaluation
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Kasturl indexes

Object Detection

FDA(t) = 0‘*’“}?—?-&“0

it
‘wmapped

+(t) t)
G’ N D;

Overlap_Ratio = Z

i—1 ‘G:{'“ U Df}

t=N frames
St=Nranee D A(2)

SFDA = —= < -
Yo 3(Ng OR N
M()Dﬂ(f} —1— 'flm.(ﬂlr.) + ﬂf(fp!-)
LI N{” 1
G

78
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Kasturl indexes

Object Tracking

1 Niriiicsa |:’"‘ PI_J |
Napped 2 s1—1 |f-,r1'jLD|,f||

STDA = Z

= N(G.up,#0)
ATA = ‘?‘2‘4
[ .:3; J}}

e g O]
M()TP:E = [lp ui 8

"'"f TaTes N”}

i=1 mapped
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Descriptors

- Some others applications do not need tracking
- Face detection
- Human detection
- Crowding estimation

- Often some descriptors are computed...
- SIFT
- SURF
- Haar
- HOG

... and used in some classifiers
- SVM
- K-NN

80



PEDESTRIAN DETECTION BY HISTOGRAMS OF ORIENTED
GRADIENTS

Navneet Dalal and Bill Triggs
CVPR 05






Support Vector Machine Detector
(Papagerogiu & Poggio, 1998)

descriptors
E!?!%!!Q I E
o
B
l training

Support
vector
— machine

_"al

multi-scale
search

test image
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HOG Steps

- HOG feature extraction

- Compute centered horizonal and vertical gradients with no
smoothing

- Compute gradient orientation and magnitude
- Divide de image into overlapping blocks
- Quantize the gradient orientation into n bins

- Concatenate histograms

84
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Computing Gradients

- Centered /' = lim fla+ h)%f(x — h)

- Masks in x and y directions 1

- In polar coordinates

- Magnitude s =[5z +s

- Orientation 0 = arctan (S—y>

Sz

85
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Cell Orientation Histogram 1/2

- Divide the window into adjacent, non-overlapping cells of
size CxC (C=8)

- In each cell, compute a histogram of the gradient
orientation binned into B bins (B=9)

- Few bins = quantization artifacts

- Interpolates votes linearly between neighboring bin
centers
- the vote is the gradient magnitude
- a pixel with magnitude x and orientation @ contributes a vote

Cj+1 — V) . v, 1
Vi =R to bin number J = {; - §J mod B

- where w is the width of a bin
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Cell Orientation Histogram 2/2

- Example: if =85 degrees wo__80
20 7\ TP
1?{' N, ".l I} / }:ﬁ
- Distance to the bin centers Bin 70 and ™/ ~X\\//Z~—"1"
Bin 90 are 15 and 5 degree, ™ == _
. 9 Bins
respectively
= [
- Hence, ratios are 5/20=1/4 and :i T 100
16/20=3/4 sEja=E unm

L - - S - . T -

=k
L=
A
Q

w o i

70 90 110130150170

FiL*
: . _ In centers
- The resulting cell histogram is a

vector with B nonnegative entries
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Block normalization

- Group cells into overlapping blocks of 2x2 cells each

- Concatenate the four cell histograms in each block into a
single block feature vector b and normalize the block
feature vector by its Euclidean norm

Block 2
Block 1

b
b +
VIbJ + e

Cells
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HOG Features Vector

- Concatenate histograms

- Normalize and threshold results to make values
independent of overall image contrast and to prevent big
influence of very large gradients

hy, < min(h,,, 7)

h h
h « h «
2 2
VIIR|? +e VIR|? +e
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Some numeric details

- 128x64 window (8192 pixels)

- Cells of 8x8 pixels

- Blocks with 8-pixel overlapping and 4 cells per block
- 9 orientation bins

- 16 cells vertically and 8 horizontally
- 15 blocks vertically and 7 horizontally

- lh|=15x7 x4 x9=3780

- can be viewed as 15x7x4=420 histograms of 9 values so
a 420x9 matrix
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Visualization

91
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Conclusions

- A huge number of applications are based on video
analysis

- Real-time processing, privacy laws, etc. impose severe
constraints to algorithms

- Many problems are still open



