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 Topology

 Nodes = primitives, elements, parts

 Edges = relations

 Attributes

 Statistical : observations, distributions, …

 Geometrical : metrics (distances, angles, similarities)

 Positions : absolutes or relatives 

 Visual features : discriminative elements

 Trying to ensure

 Stability (invariance)

 Tolerance : noises, variations

 Classes discrimination

 But 
 Symbolic VS numerical

 Discretisation

Graphs : A powerful representation tool …
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What is a structural representation?
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Introduction

• Terminology and notation
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Adjacency matrix
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Degree matrix
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Laplacian Matrix



EXTRACTION OF STRUCTURAL
PRIMITIVES INSIDE IMAGES
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Structural representations

From pixels to EoC

 Elementary Element of Content
constituting an image

 Vectors, regions, points, CC, …

 Size, shape, colors of the elements

 Physical structure

 Decomposition into sub-parts

 Relation between EoC : neighbourhood,
distances,...

 Image = Superposition of layers

 Logical structure

 A priori knowledge – atlas

 Semantical aspects

 Knowledge about the possible content
and organization of the images

 Hierarchical organization of primitives
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For binary images- Skeletonization

 Definition (skeleton or topological skeleton) 

• A thin version of the shape defined by successive 

pixels equidistant to the boundaries

• Emphasizes geometrical and topological 

properties such as topology, length, width and 

connectivity

• Distance transform: Together with the distance of 

its points to the shape boundary, the skeleton 

contain all the information necessary to 

reconstruct the shape

https://en.wikipedia.org/wiki/Equidistant
https://en.wikipedia.org/wiki/Boundary_(topology)
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Skeletonization

Extraction algorithm: Iterative erosions
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Problems with skeleton . . .

 Junctions, intersections, 
barbules, …

 Time consuming, not robust

 But used a lot…
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Skeleton representation?

5
6

7

Contour / skeleton Tracking  Encoding with Freeman
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Polygonal approximation Vectorisation

 From pixels to vectors
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Polygonal approximation Vectorisation

 Iterative Methods [Wall 84]

 Recursive Methods
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 Syntactic methods  Grammars

 Adapted to 1D sequences  Sequence of elements

 Not adapted to 2D or 3D images

17

Relationships between primitives
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Relationship between primitives

Spatial Relationship

• Bi dimensional Allen Algebra

• Egenhofer algebra
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Graph of pixels
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255 255
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0255

Image

Attributed graph Maximum spanning 

tree

Expensive edge deletion

[Morris, 1986]

[Franco, 2003] 

Graphs made of pixels are often too big to 

be analysed

Problem

 Pixels  The nodes of the graph

 Edges The values (RGB, grey values)
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Skeleton Graph
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Region Adjacency Graph

[Locteau 2008]
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Region Adjacency Graph

 Double representation



Structural methods for image and video analysis

Spatial relationship graph
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Interest Point Graph

 Node  Keypoints

 Edges  distances
between Keypoints

 Many other
possibilities

 Similarities

 Angles

 …
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Multi-level representations

 Quadtree

 Root = Full Image

 Recursive splitting into 4 regions

 Split : each node has 0 or 4 children

 Merge : possible merging of nodes

 Hyper-graphs, pyramids, …
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A detailed example

Node = EoC

- Type of EdC
– Centre c :(X,Y) de la Bounding Box
– Bounding Box
– Bounding Rectangle BR :(P1,P2,P3,P4)
– Angle principal  = angle du rectangle englobant
– Gray level inside BB
– Color : average inside EdC
– Confidence rate
…

Edge = Relation between EoC

– Distance minimal between 2 EdC
– Angle inter EdC
– Relation : Left, Right, above, below, inside, partially
included, L , T ,P , X , S ,…

Image  Regions/primitives  Graph of EoC

EdC
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A detailed example

Graph of EoC

Initial graph
• Connected Components

• Vectors

• Quadrilaterals

Can evolve into:

• Characters

• Words

•Triangles

• Diodes

• …
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A detailed example



USING GRAPH 
FOR IMAGE SEGMENTATION



Structural methods for image and video analysis

• RAG for an incremental segmentation of 3D images

• Improving the quality of the segmentation by interactive

transformations

• Addition and deletion of nodes & edges

• Splitting or Merging nodes

• Annotation of nodes and edges

• Interactive Features selection

Interactive image segmentation

What is this graph?
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1 pixel / VoxelMany
understandable features

Interactive image segmentation

1 pixel / VoxelMany modalities

Voxel characterization by 
understandable features

• Registration of the different 
modalities ( T1, T2, …) 

• 1 voxel = 1 list of features Rj instead of 
a color  Voxeli = [F1 F2  F3  …]

• 1 voxel = 1 individual

Region characterization
• Average of the features computed on all the voxels of the region

F1

F2

F3

…

T1

T2

Voxel1 = [F1 F2  F3  …]
Voxel2 = [F1 F2  F3  …]
Voxel3 = [F1 F2  F3  …]
Voxel4 = [F1 F2  F3  …]
Voxel5 = [F1 F2  F3  …]

…..
VoxelN= [F1 F2  F3  …]

R1 = [F1 F2  F3  …]
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 Structuration of the data with a RAG

 Region = Node

 Attributes = The understandable features

 Averages of the features inside the region F

 Centre of gravity G(x,y,z)

 Relationship = Edge

 Attributes = Relation descriptors

 The 2 linked nodes

 Intersection surface

Interactive image segmentation
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Interactive image segmentation

Initialisation

 RAG with 1 node = full image

 1st step of the process : division

 After, what the user decides…
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Interactive image segmentation

 Division operator

 Fonction Seg corresponding to K-means

 Fast and low memory

 Robust Partitioning

 New graph         :

: desired nb of regions

: selected features

: node to divide
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Interactive image segmentation

 Merging operator

 Union of the 2 selected regions

 New graph          :

 Updating of the node attributes :

With the number of voxels associated to a node and 
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Incremental segmentation (GUI)
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Incremental segmentation – Explanations?

Division, K=2 Division, K=2

Division, K=2 Fusion Result scénario 1
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Incremental segmentation

Division, K=6

Fusion

Fusion

Result scenario 2 Result scenario 1
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Segmentation of sheep brain images using local probabilistic atlases coupled 

with topological information (NeuroGeo) [Galisot]

 Learning a topological graph

 Using it for better segmentation

Encoding the a priori information with graphs
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 Learning of the topological graph

 Based on labeled images

 Local iterative registration

 Getting probability map

 Getting template image

 Protocol

 6 images MRI, T2, 7T, ex vivo (NeuroSpin)

 16 regions have been manually segmented : 

 Olfactory bulbs, Caudate nucleus, PAG, Amygdalae, 
Superior Colliculus optic, Superior Colliculus moteur, Inferior 
Colliculus moteur, Septum,Hippocampus

How to encode the ‘a priori information’?
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 Incremental segmentation

Using a priori information with graphs
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Using a priori information with graphs

 Some results
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Region Spotting with graphs

H1 – Symbols are composed of small segments 

compared to the other parts

H2 – Segments inside a symbol are of similar

length

H3 – Symbols can correspond to loops

H4 – Symbols can correspond to parallel

segments 

H5 – Segments inside symbols are connected to 

maximum 3 other segment

H6 – Two segments with 90° usually correspond 

to a symbol

Used Heuristics

Score computation

A first draft

• Using heuristics to associate score to the 

nodes and edges

• Using Machine Learning
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(b) score propagation  inside loops 0.7 has been propagated

(a) Initial scores

Score Propagation

Region Spotting with graphs
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Ts >= 0,4   BB=8                      Ts >= 0,6   BB=9 Ts => 0,8   BB=6

Extraction of RoI / sub-graphs using the scores

Region Spotting with graphs
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Experimentations on different types of documents

Diagramme logique Plan d’architectureTs >= 0,6 Ts >= 0,5

Region Spotting with graphs



Using Graphs 
for Object Recognition
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Pattern / EoC recognition (toward Machine Learning)

How computers can recognize objects?

• We need a large set of (labelled) examples similar to the patterns to be 

recognized  a training set

• We need a list of stable and discriminative features (shape, color, size,…) used 

to describe the patterns (labelled ones and unknown one)

A recall about PR mechanisms ?

A E

… …

[ Training set ]

x1

[ 2D Representation

of the training set]

A

A

x2

x1

Stable and 

discriminative 

features
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Pattern / EoC recognition (toward Machine Learning)

How computers can recognize objects?

• When an unknown EoC arrives, we compute its features and compare it with the 

content of the training set (associated built models)

A recall about PR mechanisms

x2

[ 2D Representation

of the training set]

A

A

x2

x1

?A
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Many possible choices and techniques

• For selection of discriminative features

1 EoC  1 Vector

1 EoC  1 Graph

• Many Machine Learning models and tools

50

A recall about PR mechanisms
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Deep Learning (Conv. Neural Net)

A recall about PR mechanisms
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Why using structural methods?

 Statistical Methods
 Classes and frontiers
 Existing statistical tools for evaluation of the quality of the chosen

feature space
 So many models and toolbox

 Structural Methods

 Taking into account the context

 A matching between sub-parts as results in addition to the decision

 Partial or incremental recognition

 Adaptive dimensionality of the models

 Multimodal Features

 Computational limitations?

 Learning?
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Structural PR  Graph based matching

• Definition (Matching)
• A matching between G1 = (V1;E1) and G2 = (V2;E2) 

• = a relation m  V1 x V2 (u1; u2)  m 

•  The vertex u1 is matched with the vertex u2

• Different types of matching
• Bijective matching : cardinality = (1; 1)

• Injective matching : cardinality = (1; 0..1)

• Univoque matching : cardinality = (0..1; 0..1)

• ...

• Multivoque matching : cardinality = (0..|V2|; 0..|V1|)

• High Complexity  Toward approximative methods !

[Solnon, 2007] 

C’B’

A’

CB

A

What does it mean?



Structural methods for image and video analysis

Structural PR  Graph based matching

Graph Matching

Exact Méthods

Sub-graph Isomorphisms

Maximum common su-graph 

Exact Matching

Incomplet Matching

Inexact Methods

Distances/Similarities between graphs

+

Inexact Matchings

Distances / Similarities only

Graph Edit Distance, 

Algorithms Glouton, Tabou

Graph Embedding

Graph Probing

Isomorphisms between graphs 

Taking care of the attributes in addition to the graph topology

H
a

rd
 C

o
n

s
tr

a
in

ts

S
o

ft
 C

o
n

s
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a
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Structural PR  Graph based matching

Graph isomorphism problem

Model Graph GM Test Graph GD

Univoques Matching – Hard Constraints

C’B’

A’

CB

A

Problem
Not robust to noise and distorsions

Objective
Bijective Matching
Hard Constraints
Possible on huge graphs

Sub-gtaph isomorphism

Test Graph GD Model Graph  GM

CB

A D

C’B’

A’

Problem
Possible on medium size graphs

Objective
Injective Matching
Hard  Constraints
NP-complete
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Structural PR  Graph based matching

Tree search Algorithms (with backtrack)

1

1

2

1

2

3
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A look-ahead() checks before each association, the existence of a 
possible matching at the next step

Forward

Structural PR  Graph based matching

Tree search Algorithms (with forward checking)

1
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Structural PR  Graph based matching

Problem

- Time complexity … 

- Possible only for small graphs with symbolic attributes

Resolution using the association graphs

a a

a b

1 4

2 3
GM

a a a

b

1’ 2’ 4’

3’

GD

1,1’

1,2’
1,4’

2,1’

2,2’

2,4’

3,3’4,1’

4,2’

4,4’

a a

a b

1 4

2 3
GM

a a a

b

1’ 2’ 4’

3’

GD

Search for cliques of maximum size

C1 [(1, 1’), (2, 2’), (3, 3’)]

C2 [(1, 1’), (3, 3’), (4, 4’)]

a a

a b

1 4

2 3
GM

a a a

b

1’ 2’ 4’

3’

GD

Maximun commun sub-graph algorithm

(inside the association graph edges represent the 
topological compatibility of the matching)
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Structural PR  Graph based matching

Univoque Matching – Hard Constraints

TOO  HARD…

=
?
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Structural PR  Graph based matching

Univoque Matching – SOFT Constraints

 Soft Constraints

 Notion of similarity ≠ Exact matching

 Exploration of possibilities…

Very time consuming…

 Similarity Matrix between nodes

Heuristics 
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Cost : associated to transformations (Insertion, suppression, 
substitution – edges and nodes)

Edit Path : set of needed transformations to obtain G2 from G1

Global Error : Sum of all the elementary costs

Objective : Search for the minimal cost edit path

Graph Edit distance [Bunke 99]

Structural PR  Graph based matching

Univoque Matching – Soft constrainsts



Structural methods for image and video analysis

Evoluted version of the Graph Edit distance

Structural PR  Graph based matching

Multivoque Matching – Soft constrainsts

New version of GED with additional possible transformations

MERGE   &  SPLIT    Multivoque Matching …

Univoque Matching  each node of G1 can be matched

with only one node of G2

[Champin / Solnon] (2003-2005)

ACoteDe ACoteDe

Sur Sur

1 2

5

Sur

3 4

6

Sur

ACoteDe ACoteDe ACoteDe

Sur

A B C D

E

Sur

ACoteDe

Sur
Sur

A1

B2
E5
E6

Matching m
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Structural PR  Graph based matching

Multivoque Matching – Soft constrainsts

   

























 





1111

11
j

j

k

i

i

n

j

j

m

i

iMp EVSc 

Node to Node

similarity
Edge to Edge

similarity
Penalties for multiple

matchings (splits)

Problem : Definition of the similarity measure and edit costs [Qureshi03]

Matching Exploration  a very combinatory problem !

Goal = Finding m  V1 x V2 maximising

score(m) = f (G1 m G2) - g(splits(m))

Problem NP-difficile 2|V1|.|V2| combinaisons

Résolution by a complete search ?

Structuring the search space with lattices...

...but the score function is not monotonous….

Limited to very small graphs (10 nodes)

Using heuristics approaches (not exact)
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 Idea : Production of a succession of solutions with improved quality along time 

 Anytime algorithms [Zilberstein 1996]

 Continous Amelioration

 Monotonicity

 Interruptability

64

Scalability of GM Algorithms: Anytime GM [Abu-Aisheh16]

D
is

ta
n

c
e

Time
100 200 300 400 500

∞

Setup 

time

Structural PR  Graph based matching

Setup time and quality of 

the first solution

0
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Anytime Depht First GED

 Tree search algorithm (A*)

 Low memory consomption (DF)

 Optimisation of the computation (with preprocessing)

 Selection of the first solution (UB)

65

Preprocessing Step

Branch-and-Bound

Preprocessing

Branch-and-Bound

Bipartite Graph 

Matching

 To prune the 

search tree

 To start with the 

promising vertices of G1

Cost Matrices 

computation

 To prepare the data
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A-

A’ A-

B’

A-

C’

A-

ϵ

roo
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B-

A’

B-

C’
B-ϵ

C-C’ C-ϵ

D--ϵ

g=1

h=4

f=5

g=2

h=5

f=7

g=3

h=2

f=5

g=1

h=5

f=6

g=1

h=5

f=6

g=1.5

h=4

f=5.5

g=3

h=3

f=6

g=1.5

h=4

f=5.5

g=2

h=3.8

f=5.8

g=5.7

h=0*

f=5.7*

V1

Anytime Depht First GED

 Selection of the 1st solution (UB)  Setup time 

 Speed of the evolution

 Stop criteria ?
 …

Branch and Bound

Preprocessing

dU B = +oo

or



Structural methods for image and video analysis

67

Anytime Depht First GED

 Selection of the 1st solution (UB)  Setup time 

 Speed of the evolution

 Stop criteria ?
 …

Branch and Bound

Preprocessing

dU B = +oo

ou

A-

A’
A-

B’

A-

C’

A-

ϵ

root

B-

A’

B-

C’
B-ϵ

C-C’ C-ϵ

D--ϵ

g=1

h=4

f=5

g=2

h=5

f=7

g=3

h=2

f=5

g=1

h=5

f=6

g=1

h=5

f=6

g=1.5

h=4

f=5.5

g=3

h=3

f=6

g=1.5

h=4

f=5.5

g=2

h=3.8

f=5.8

g=5.7

h=0*

f=5.7*

Results

 Trade-off between time and quality

 Shape of the curve (setup, …)

 Depening of the graph types

 ….
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From graph space back to Vector space…

The node to node matching is lost !

Information extraction by feature selection  Construction of a feature vector:

 : G Rn  =>     g   (x1,…., xn)

Combination of structural and statistical approaches

Structural PR  Graph based matching

Graph Probing and Embedding

What does it mean?
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Lexicon of Topological patterns

Frequency of the patterns  Construction of a vector

Trying to take care of attributes  Construction of a Matrix  discrétisation

Structural PR  Graph based matching

Embedding topological information [Sidère09]

Example

Graphe avec attributs

 g   (x1,…., xn) = (4,4,5,2,1,1)
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 g   (x1,…., xn)

Structural PR  Graph based matching

Fuzzy multi-level Graph Embedding [Luqman13]

Trying to embbed topological and statistical information

Graph 
order

Graph 
size

Fuzzy 
histograms 
of numeric 

node 
attributes

Crisp 
histograms 

of 
symbolic 

node 
attributes

Fuzzy 
histograms 
of numeric 

edge 
attributes

Crisp 
histograms 
of symbolic 

edge  
attributes

Fuzzy 
histogram 
of node 
degrees

Fuzzy 
histograms 
of numeric 

resemblance 
attributes

Crisp 
histograms 
of symbolic 
resemblance 

attributes

Graph Level Information
[macro scale]

Elementary Level 
Information

[micro
scale]

Structural Level Information
[intermediate scale]
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 g   (x1,…., xn)

Structural PR  Graph based matching

Fuzzy embedding

Frequency Histogram

Fuzzy transformation

Fuzzy multi-level Graph Embedding [Luqman13]

Adding local topology information
Ressemblance Degree on node attributes

Ressemblance Degree on edge attributes

Graph 
order

Graph 
size

Fuzzy 
histograms 
of numeric 

node 
attributes

Crisp 
histograms 

of 
symbolic 

node 
attributes

Fuzzy 
histograms 
of numeric 

edge 
attributes

Crisp 
histograms 
of symbolic 

edge  
attributes

Fuzzy 
histogram 
of node 
degrees

Fuzzy 
histograms 
of numeric 

resemblance 
attributes

Crisp 
histograms 
of symbolic 
resemblance 

attributes

),max(

),min(

21

21

aa

aa
eresemblancnumeric 



 


otherwise

bbif
eresemblancsymbolic

0

1 21
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Machine Learning with graphs?

S = a set of graphs

C = set of possible graphs derived from S

D = an edit distance

Median Graph

Many other Problems…

How to define GED Costs?

How to define the embedding functions?

 Learning to match Graphs is the actual crutial question…
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String Comparison

 String Edit distance : cost to transform a sequence into 
an other 

 Possible transformations : 

 Insertion of an element 

 Suppression of an element

 Substitution of an element by an other one

Distance = cost( 7→6 ) + cost( suppr1 ) + cost( 2→3 ) + cost( suppr2 )
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Spatial relationship graph
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