

Structural methods for image and video analysis

PART I: Content extraction and recognition (in images)

Jean-Yves Ramel Laboratoire Informatique de Tours - FRANCE

Outline

- Introduction
 - Terminology and Notations
- Extraction of structural primitives inside images
 - □ Types of structural primitives
 - □ From primitives to graphs
- Using graphs for image segmentation
 - □ Interactive image segmentation
 - □ Learning and Using a priori information
 - Region spotting with Graphs
- Using graphs for object recognition
 - Exact and Inexact Graph Matching
 - Graph similarity, Graph embedding
 - Learning to match graphs
- Conclusion

Graphs : A powerful representation tool ...

- Topology
 - \Box Nodes = primitives, elements, parts
 - \Box Edges = relations
- Attributes
 - □ Statistical : observations, distributions, ...
 - □ Geometrical : metrics (distances, angles, similarities)
 - Positions : absolutes or relatives
 - Visual features : discriminative elements
- Trying to ensure
 - □ Stability (invariance)
 - □ Tolerance : noises, variations
 - Classes discrimination
- But
 - Symbolic VS numerical
 - Discretisation

What is a structural representation?

Introduction

• Terminology and notation

Definition and notation of a graph:

Definition

Let L_V and L_E denote the set of node and edge labels, respectively. A labeled graph G is a 4-tuple $G = (V, E, \mu, \xi)$, where

- V is the set of nodes,
- $E \subseteq V \times V$ is the set of edges
- $\mu: V \rightarrow L_V$ is a function assigning labels to the nodes, and
- $\xi: E \to L_E$ is a function assigning labels to the edges.
- Let $G_1 = (V_1, E_1, \mu_1, \xi_1)$ be the source graph
- And $G_2 = (V_2, E_2, \mu_2, \xi_2)$ the target graph
- With $V_1 = (u_1, ..., u_n)$ and $V_2 = (v_1, ..., v_m)$ respectively

Adjacency matrix

Degree matrix

trix (each row sums to one)

Laplacian Matrix

EXTRACTION OF STRUCTURAL PRIMITIVES INSIDE IMAGES

Structural representations

From pixels to EoC

Elementary Element of Content constituting an image

- □ Vectors, regions, points, CC, ...
- □ Size, shape, colors of the elements

Physical structure

- Decomposition into sub-parts
- Relation between EoC : neighbourhood, distances,...
- Image = Superposition of layers

Logical structure

- A priori knowledge atlas
- Semantical aspects
- Knowledge about the possible content and organization of the images
- Hierarchical organization of primitives

For binary images- Skeletonization

Definition (skeleton or topological skeleton)

- A thin version of the shape defined by successive pixels <u>equidistant</u> to the <u>boundaries</u>
- Emphasizes geometrical and topological properties such as topology, length, width and connectivity
- Distance transform: Together with the distance of its points to the shape boundary, the skeleton contain all the information necessary to reconstruct the shape

Skeletonization

Extraction algorithm: Iterative erosions

F	П
H	H
H	П
Ħ	Ħ
Ħ	H
Ħ	

Problems with skeleton . . .

- Junctions, intersections, barbules, ...
- Time consuming, not robust
- But used a lot...

Skeleton representation?

Contour / skeleton Tracking → Encoding with Freeman

0

Polygonal approximation→ **Vectorisation**

From pixels to vectors

Polygonal approximation \rightarrow Vectorisation

Iterative Methods [Wall 84]

Recursive Methods

Relationships between primitives

■ Syntactic methods → Grammars

 \Box Adapted to 1D sequences \rightarrow Sequence of elements

Not adapted to 2D or 3D images

Relationship between primitives

Spatial Relationship

- Bi dimensional Allen Algebra
- Egenhofer algebra

Fig. 1.12. Relations topoliques entre deux objets telles que définies par Egenhofer

Graph of pixels

Pixels → The nodes of the graph Edges → The values (RGB, grey values)

Attributed graph

Maximum spanning

tree

[Morris, 1986]

Expensive edge deletion

Problem

Graphs made of pixels are often too big to be analysed

[Franco, 2003]

Skeleton Graph

Region Adjacency Graph

Region Adjacency Graph

Double representation

Spatial relationship graph

Interest Point Graph

- Node → Keypoints
- Edges → distances between Keypoints
- Many other possibilities
 - Similarities
 - Angles
 - □ ...

Multi-level representations

Quadtree

- Root = Full Image
- Recursive splitting into 4 regions
- Split : each node has 0 or 4 children
- Merge : possible merging of nodes

A detailed example

Image \rightarrow Regions/primitives \rightarrow Graph of EoC

- Confidence rate

A detailed example

. . .

<Graph id="Symbole4"> <node id="node0"> <attr name="forme"><string>Quad</string></attr> <attr name="x1i"><string>232</string></attr> <attr name="y1i"><string>497</string></attr> <attr name="x1f"><string>231</string></attr> <attr name="v1f"><string>417</string></attr> <attr name="x2i"><string>227</string></attr> <attr name="y2i"><string>418</string></attr> <attr name="x2f"><string>229</string></attr> <attr name="v2f"><string>498</string></attr> <attr name="angle1"><string>90</string></attr> <attr name="angle2"><string>91</string></attr> <attr name="thickness1"><string>8</string></attr> <attr name="thickness2"><string>7</string></attr> <attr name="length"><string>81</string></attr> <attr name="score"><string>0.703</string></attr> </node>

<edge id="edge1" from="node0" to="node1"> <attr name="angle"><string>89</string></attr> <attr name="type"><string>T</string></attr> <attr name="score"><string>0.409</string></attr> </edge> <edge id="edge2" from="node1" to="node2">

<attr name="angle"><string>46</string></attr>
<attr name="type"><string>L</string></attr>
<attr name="type"><string>L</string></attr>
<attr name="score"><string>0.388</string></attr>
</edge>

USING GRAPH FOR IMAGE SEGMENTATION

- RAG for an incremental segmentation of 3D images
 - Improving the quality of the segmentation by interactive transformations
 - Addition and deletion of nodes & edges
 - Splitting or Merging nodes
 - Annotation of nodes and edges

Interactive Features selection

What is this graph?

Voxel characterization by understandable features

- Registration of the different modalities (T1, T2, ...)
- 1 voxel = 1 list of features R_j instead of a color → Voxel_i = [F₁ F₂ F₃ ...]
- 1 voxel = 1 individual

Region characterization

Average of the features computed on all the voxels of the region

Structuration of the data with a RAG

Region = Node

- □ Attributes = The understandable features
 - Averages of the features inside the region F
 - Centre of gravity G(x,y,z)

Relationship = Edge

- \Box Attributes = Relation descriptors
 - The 2 linked nodes
 - Intersection surface

Initialisation

- RAG with 1 node = full image
- Ist step of the process : division
- After, what the user decides...

$$Seg: F, U_{Seg}, G_k, U_{op} \to G_{k+1}$$

Division operator

- □ Fonction *Seg* corresponding to *K*-means
 - Fast and low memory
 - Robust Partitioning
- □ New graph G_{k+1} :

$$G_{k+1} = Kmeans(U_{op}, V, G_k, F, U_{Seg})$$

- U_{Seg} : desired nb of regions F : selected features
- U_{op} . V : node to divide

Merging operator

- Union of the 2 selected regions
- \Box New graph G_{k+1} :

 $G_{k+1} = Merge(U_{op}, E, G_k)$

 \Box Updating of the node attributes V_{new} :

$$V_{new}.T_i = \frac{(V_1.T_i)(V_1.NV) + (V_2.T_i)(V_2.NV)}{V_1.NV + V_2.NV}$$

With *NV* the number of voxels associated to a node and

$$T = \{\overline{F}, \overline{G}\}$$

Incremental segmentation (GUI)

Incremental segmentation – Explanations?

Division, K=2

Result scénario 1

Division, K=2

Fusion

Incremental segmentation

Division, K=6

Fusion

Fusion

Result scenario 2

Result scenario 1

Encoding the *a priori* information with graphs

Segmentation of sheep brain images using local probabilistic atlases coupled with topological information (NeuroGeo) [Galisot]

- Learning a topological graph
- Using it for better segmentation

How to encode the '*a priori* information'?

- Learning of the topological graph
 - Based on labeled images
 - Local iterative registration
 - Getting probability map
 - Getting template image

Protocol

- □ 6 images MRI, T2, 7T, ex vivo (NeuroSpin)
- $\hfill\square$ 16 regions have been manually segmented :
- Olfactory bulbs, Caudate nucleus, PAG, Amygdalae, Superior Colliculus optic, Superior Colliculus moteur, Inferior Colliculus moteur, Septum, Hippocampus

Incremental segmentation

Using a priori information with graphs

Local atlas registration

MRI image to be segmented

Using a priori information with graphs

Some results

Score computation

A first draft

- Using heuristics to associate score to the nodes and edges
- Using Machine Learning

Used Heuristics

- H1 Symbols are composed of small segments compared to the other parts
- H2 Segments inside a symbol are of similar length
- H3 Symbols can correspond to loops

H4 – Symbols can correspond to parallel segments

H5 – Segments inside symbols are connected to maximum 3 other segment

H6 – Two segments with 90° usually correspond to a symbol

Extraction of Rol / sub-graphs using the scores

Experimentations on different types of documents

Diagramme logique Ts >= 0,6

Using Graphs for Object Recognition

A recall about PR mechanisms ?

Pattern / EoC recognition (toward Machine Learning)

How computers can recognize objects?

- We need a large set of (labelled) examples similar to the patterns to be recognized → a training set
- We need a list of stable and discriminative **features** (shape, color, size,...) used to describe the patterns (labelled ones and unknown one)

A recall about PR mechanisms

Pattern / EoC recognition (toward Machine Learning)

How computers can recognize objects?

 When an unknown EoC arrives, we compute its features and compare it with the content of the training set (associated built models)

A recall about PR mechanisms

Many possible choices and techniques

• For selection of discriminative features

Statistique suffisante

Performance du classifieur

• Many Machine Learning models and tools

A recall about PR mechanisms

Deep Learning (Conv. Neural Net)

Why using structural methods?

Statistical Methods

- □ Classes and frontiers
- Existing statistical tools for evaluation of the quality of the chosen feature space
- □ So many models and toolbox

Structural Methods

- □ Taking into account the context
- □ A matching between sub-parts as results in addition to the decision
- Partial or incremental recognition
- □ Adaptive dimensionality of the models
- Multimodal Features
- Computational limitations?
- Learning?

- Definition (Matching)
 - A matching between G1 = (V1;E1) and G2 = (V2;E2)
 - = a relation $m \subseteq V1 \times V2$ (u1; u2) $\in m$
 - \Rightarrow The vertex u1 is matched with the vertex u2
- Different types of matching
 - Bijective matching : cardinality = (1; 1)
 - Injective matching : cardinality = (1; 0..1)
 - Univoque matching : cardinality = (0..1; 0..1)
 - ..
 - Multivoque matching : cardinality = (0..|V2|; 0..|V1|)
- High Complexity → Toward approximative methods !

[Solnon, 2007]

What does it mean?

Taking care of the attributes in addition to the graph topology

Univoques Matching – Hard Constraints

 $\begin{array}{c} A' \\ B' \\ C' \\ Model Graph G_{M} \end{array}$

Graph isomorphism problem

Objective

Bijective Matching Hard Constraints Possible on huge graphs

Problem

Not robust to noise and distorsions

Sub-gtaph isomorphism

Test Graph G_D

Model Graph G_M

Objective

Injective Matching Hard Constraints NP-complete

Problem

Possible on medium size graphs

Tree search Algorithms (with backtrack)

57

Structural PR -> Graph based matching

Tree search Algorithms (with forward checking)

A look-ahead() checks before each association, the existence of a possible matching at the next step

58

Structural PR -> Graph based matching

Maximun commun sub-graph algorithm

Resolution using the association graphs

Search for cliques of maximum size C1 [(1, 1'), (2, 2'), (3, 3')] C2 [(1, 1'), (3, 3'), (4, 4')] (inside the association graph edges represent the topological compatibility of the matching)

Problem

- Time complexity ...
- Possible only for small graphs with symbolic attributes

Univoque Matching – Hard Constraints

TOO HARD...

Etape-3

Etape-4

Structural PR -> Graph based matching

Etape-1

0 1,00

0.51

0,51

0,98

0.08

0.08

1.00

1,00

0.51

1,00 0,99

0,51

0,51

0.98

0.08

Etape-6 Etape-5 Etape-2

1,00 0,99 0,97 0,95 0,12 0,12

0,95

0.56

0.56

0.13

0.12

0.61

0.96

ίD,

l 0,97

0.52 0.54

0,99

0.09 | 0.11

0,52 0,54

Univoque Matching – SOFT Constraints

Soft Constraints

- Notion of similarity ≠ Exact matching
- Exploration of possibilities...

Very time consuming...

Similarity Matrix between nodes

Univoque Matching – Soft constrainsts

Graph Edit distance [Bunke 99]

Cost : associated to transformations (Insertion, suppression, substitution – edges and nodes)

Edit Path : set of needed transformations to obtain G2 from G1

Global Error : Sum of all the elementary costs

Objective : Search for the minimal cost edit path

Let $G_1 = (V_1, E_1, L_{V_1}, L_{E_1}, \mu_1, \zeta_1)$ and $G_2 = (V_2, E_2, L_{V_2}, L_{E_2}, \mu_2, \zeta_2)$ be two graphs, the graph edit distance between G_1 and G_2 is defined as:

$$d_{\textit{plain}}(g_m, g_t) = \min_{e_1, \cdots, e_k \in \gamma(g_1, g_2)} \sum_{i=1}^k c(e_i)$$

Multivoque Matching – Soft constrainsts

Evoluted version of the Graph Edit distance

Univoque Matching \rightarrow each node of G1 can be matched with only one node of G2

New version of GED with additional possible transformations

MERGE & SPLIT → Multivoque Matching ...

[Champin / Solnon] (2003-2005)

Structural PR → Graph based matching Multivoque Matching – Soft constrainsts

Problem : Definition of the similarity measure and edit costs [Qureshi03]

Matching Exploration \rightarrow a very combinatory problem !

Goal = Finding $m \subseteq V_1 \times V_2$ maximising $score(m) = f(G_1 \cap_m G_2) - g(splits(m))$ Problem NP-difficile $\rightarrow 2^{|V||.|V2|}$ combinaisons

Résolution by a complete search ?

Structuring the search space with lattices... ...but the score function is not monotonous.... Limited to very small graphs (10 nodes)

Using heuristics approaches (not exact)

Scalability of GM Algorithms: Anytime GM [Abu-Aisheh16]

- Idea : Production of a succession of solutions with improved quality along time
- Anytime algorithms [Zilberstein 1996]

Structural methods for image and video analysis

Anytime Depht First GED

Preprocessing

Branch-and-Bound

- Tree search algorithm (A*)
- Low memory consomption (DF)
- Optimisation of the computation (with preprocessing)

**

* To prune the

search tree

* To start with the

promising vertices of G1

Selection of the first solution (UB)

Sort V_1 in ascending order according to ω 's $V_1 = \{u_k, u_2, u_1,\}$

Anytime Depht First GED

- Selection of the 1st solution (UB) → Setup time →
- Speed of the evolution
- Stop criteria ?

•••

Anytime Depht First GED

- Selection of the 1st solution (UB) → Setup time →
- Speed of the evolution
- Stop criteria ?

$$\bigwedge \begin{cases} d_{UB} = +oo \\ ou \\ d_{UB} = d_{p_{min}}$$

Results

- Trade-off between time and quality
- Shape of the curve (setup, ...)
- Depening of the graph types

....

Structural PR → Graph based matching Graph Probing and Embedding

From graph space back to Vector space...

The node to node matching is lost !

Information extraction by feature selection \rightarrow Construction of a feature vector:

 $\varphi: G \rightarrow \mathbb{R}^n \implies \varphi(g) = (x_1, \dots, x_n)$

Combination of structural and statistical approaches

What does it mean?

Embedding topological information [Sidère09]

Example •	Graphe sans étiquette <i>G</i>							•
		Pattern	•	•••	••••	••••	$ \Delta $	\land
▲··		Freq.	4	4	5	2	1	1
		A1, corner	2	4	9	4	2	2
	\checkmark	A2, corner	0	0	0	0	0	0
	Graphe avec attributs	A3, corner	0	0	0	0	0	0
	A2 endpoint	A1, endpoint	0	0	0	0	0	0
•	X2,Y1	A2, endpoint	1	2	4	2	1	1
	VI VI	A3, endpoint	1	1	2	2	0	1
	X1,Y1 A1,corner A3,endpoint	X1, Y1	0	3	7	5	2	2
•••	XI,XI	X1, Y2	0	0	0	0	0	0
é `•	Al.comer	X2, Y1	0	1	3	1	1	1
		X2, Y2	0	0	0	0	0	0

$$\varphi(g) = (x_1, \ldots, x_n) = (4, 4, 5, 2, 1, 1)$$

Lexicon of Topological patterns

Frequency of the patterns \rightarrow Construction of a vector

Trying to take care of attributes \rightarrow Construction of a Matrix \rightarrow discrétisation

Fuzzy multi-level Graph Embedding [Luqman13]

Trying to embbed topological and statistical information

Graph	Graph	Fuzzy	Fuzzy	Crisp	Fuzzy	Crisp	Fuzzy	Crisp
order	size	histogram	histograms	histograms	histograms	histograms	histograms	histograms
		of node	of numeric	of symbolic	of numeric	of	of numeric	of symbolic
		degrees	resemblance	resemblance	node	symbolic	edge	edge
		_	attributes	attributes	attributes	node	attributes	attributes
						attributes		

Fuzzy multi-level Graph Embedding [Luqman13]

Machine Learning with graphs?

Median Graph

$$\overline{g} = \arg_{g \in C} \min SOD\left(g, S\right)$$

$$SOD(g,S) = \sum_{i=1}^{|S|} d(g,g_i)$$

S = a set of graphs C = set of possible graphs derived from SD = an edit distance

Many other Problems...

How to define GED Costs?

How to define the embedding functions?

→ Learning to match Graphs is the actual crutial question...

References

- Gauzere, B., Brun, L., and Villemin, D. (2011). Two new graph kernels and applications to chemoinformatics. Pattern Recognition Letters.
- Riesen, K., Neuhaus, M., and Bunke, H. (2007). Graph embedding in vector spaces by means of prototype selection. In Escolano, F. and Vento, M., editors, 6th IAPR-TC15 International Workshop GbRPR 2007, pages 383{393. IAPR TC15, Springer-Verlag.
- H. Bunke et X. Jiang : Graph matching and similarity, chapitre de "Intelligent systems and interfaces", Kluwer, 2000
- Jaume Gibert, Ernest Valveny, Horst Bunke: Graph embedding in vector spaces by node attribute statistics. Pattern Recognition 45(9): 3072-3083 (2012)
- S. Sorlin, C. Solnon et J.-M. Jolion : A Generic Graph Distance Measure Based on Multivalent Matchings, chapitre de "Applied Graph Theory in PR", Vol 52:151-182, Springer, 2007
- S. Sorlin et C. Solnon : Reactive Tabu Search for Measuring Graph Similarity, GbR, LNCS 3434:172-182, 2005
- Zeina Abu-Aisheh. Anytime and Distributed Approaches for Graph Matching. Université François Rabelais de Tours – France. May 18th, 2016.
- D. Conte, J.-Y. Ramel, N. Sidère, M.M. Luqman, B. Gauzère, J. Gibert, L. Brun, et M. Vento. "A Comparison of Explicit and Implicit GraphEmbedding Methods for Pattern Recognition". In : Proceedings of the 9th IAPR-TC15 workshop on Graph-based Representation in PatternRecognition (GbR 2013). 2013, p. 81-90.

References

- Zeina Abu-Aisheh, Romain Raveaux, P Martineau, Jean-Yves Ramel. Distributed Graph Matching and Graph Indexing Approaches: Applications to Pattern Recognition, ICPRAM 2015, Doctoral consortium
- Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Lladós, Thierry Brouard: Fuzzy multilevel graph embedding. Pattern Recognition 46(2): 551-565 (2013)
- Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Lladós, Thierry Brouard: Subgraph Spotting through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images. ICDAR 2011: 870-874
- Romain Raveaux, Sébastien Adam, Pierre Héroux, Éric Trupin: Learning graph prototypes for shape recognition. Computer Vision and Image Understanding 115(7): 905-918 (2011)
- Romain Raveaux, Jean-Christophe Burie, Jean-Marc Ogier: A graph matching method and a graph matching distance based on subgraph assignments. Pattern Recognition Letters 31(5): 394-406 (2010)
- Nicolas Sidere, Pierre Héroux, Jean-Yves Ramel: Vector Representation of Graphs: Application to the Classification of Symbols and Letters. ICDAR 2009: 681-685
- Rashid Jalal Qureshi, Jean-Yves Ramel, Hubert Cardot: Graph Based Shapes Representation and Recognition. GbRPR 2007: 49-60
- Rashid Jalal Qureshi, Jean-Yves Ramel, Didier Barret, Hubert Cardot: Spotting Symbols in Line Drawing Images Using Graph Representations. GREC 2007: 91-103

String Comparison

- String Edit distance : cost to transform a sequence into an other
 - Possible transformations :
 - Insertion of an element
 - Suppression of an element
 - Substitution of an element by an other one

Distance = cost($7 \rightarrow 6$) + cost(suppr1) + cost($2 \rightarrow 3$) + cost(suppr2)

Spatial relationship graph

